3 (Sem-5/CBCS) MAT HE 1/2/3

2023

MATHEMATICS

(Honours Elective)

Answer the Questions from any one Option.

OPTION-A

Paper: MAT-HE-5016

(Number Theory)

OPTION-B

Paper: MAT-HE-5026

(Mechanics)

OPTION-C

Paper: MAT-HE-5036

(Probability and Statistics)

Full Marks: 80

Time: Three hours

The figures in the margin indicate full marks for the questions.

OPTION-A

Paper: MAT-HE-5016

(Number Theory)

- 1. Answer the following questions as directed: $1 \times 10=10$
 - (a) Which of the following Diophantine equations cannot have integer solutions?
 - (i) 33x + 14y = 115
 - (ii) 14x + 35y = 93
 - (b) State whether the following statement is true **or** false:

"If a and b are relatively prime positive integers, then the arithmetic progression a, a + b, a + 2b,... contains infinitely many primes."

- (c) For any $a \in Z$ prove that $a \equiv a \pmod{m}$, where m is a fixed integer.
- (d) Under what condition the k integers $a_1, a_2, ..., a_k$ form a CRS (mod m)?
- (e) Find $\sigma(p)$ where p is a prime number.
- (f) Define Euler's phi function.

- (g) If n = 12789, find $\tau(n)$.
- (h) If x is a real number then show that $[x] \le x < [x] + 1$, where [] represents the greatest integer function.
- (i) Calculate the exponent of the highest power of 5 that divides 1000!
- (j) When an arithmetic function f is said to be multiplicative?
- 2. Answer the following questions: $2 \times 5 = 10$
 - (a) Show that there is no arithmetic progression a, a + b, a + 2b,... that consists solely of prime numbers.
 - (b) Use properties of congruence to show that 41 divides $2^{20}-1$.
 - (c) Let p > 1 be a positive integer having the property that p/a $b \Rightarrow p/a$ or p/b, then prove that p is a prime.
 - (d) If a is a positive integer and q is its least positive divisor then show that $q \le \sqrt{a}$.

- (e) For $n \ge 3$, evaluate $\sum_{k=1}^{n} \mu(k!)$, here μ is the Mobius function.
- 3. Answer *any four* questions: 5×4=20
 - (a) If (m, n) = 1 and $S_1 = \{x_0, x_1, x_2, ..., x_{m-1}\}$ is a CRS (mod m) and $S_2 = \{y_0, y_1, y_2, ..., y_{n-1}\}$ is a CRS (mod n) then show that the set $S = \{nx_i + my_j : 0 \le i \le m 1, 0 \le j \le n 1\}$ form a CRS (mod mn).
 - (b) Find all integers that satisfy simultaneously

$$x \equiv 5 \pmod{18}; \ x \equiv -1 \pmod{24};$$

 $x \equiv 17 \pmod{33}$

- (c) If $n \ge 1$ is an integer then show that $\sigma(n)$ is odd if and only if n is a perfect square or twice a perfect square.
- (d) If a_1 , a_2 ,..., a_k form a RRS (mod m) ie. Reduced Residue System modulo m then show that $k = \phi(m)$.

- (e) If x and y be real numbers then show that [x+y]=[x]+[y] and [-x-y]=[-x]+[-y] if and only if one of x or y is an integer.
- (f) For n > 2, show that $\phi(n)$ is an even integer. Here, ϕ is the Euler phi function.

Answer **either** (a) **or** (b) from each of the following questions: $10 \times 4 = 40$

- 4. (a) (i) Show that every positive integer can be expressed as a product of primes. Also show that apart from the order in which prime factors occur in the product, they are unique.

 3+4=7
 - (ii) If k integers $a_1, a_2, ..., a_k$ form a CRS (mod m), then show that m = k.
 - (b) (i) Show that any natural number greater than one must have a prime factor. 5

- (ii) Prove that if all the n > 2 terms of the arithmetic progression p, p+d, p+2d,..., p+(n-1)d are prime numbers, then the common difference d is divisible by every prime q < n.
- 5. (a) State and prove Wilson's theorem. Is the converse also true? Justify your answer.

 1+6+3=10
 - (b) Let a and m > 0 be integers such that (a, m) = 1, then show that $a^{\phi(m)} \equiv 1 \pmod{m}$, here ϕ is the Euler's phi function. Deduce from it the Fermat's Little theorem. Also find the last two digits of 3^{1000} .

5+2+3=10

6. (a) For each positive integer $n \ge 1$, show that

$$\phi(n) = \sum_{d \neq n} \mu(d) \frac{n}{d} = n \prod_{p \neq n} \left(1 - \frac{1}{p} \right)$$

- (b) (i) If f and g are two arithmetic functions, then show that the following conditions (A) and (B) are equivalent
 - (A) $f(n) = \sum_{d \neq n} g(d)$

(B)
$$g(n) = \sum_{d/n} \mu(d) f\left(\frac{n}{d}\right) = \sum_{d/n} \mu\left(\frac{n}{d}\right) f(d)$$

(ii) If f is a multiplicative arithmetic function, then show that

$$g_1(n) = \sum_{d/n} f(d)$$
 and

$$g_2(n) = \sum_{d \neq n} \mu(d) f(d)$$
 are both

multiplicative arithmetic functions.

- 7. (a) State and prove Chinese Remainder theorem. 2+8=10
 - (b) (i) For n > 1, show that the sum of the positive integers less than n and relatively prime to n is $\frac{1}{2}n\phi(n)$. 5

3

(ii) If $n \ge 1$ is an integer then show that $\prod_{d \ne n} d = n^{\frac{\tau(n)}{2}}$. Is $\prod_{d \ne n} d$ an integer when $\tau(n)$ is odd? Justify.

OPTION-B

Paper: MAT-HE-5026

(Mechanics)

- 1. Answer the following questions: $1 \times 10 = 10$
 - (a) What is the resultant of two equal forces acting at an angle 120°?
 - (b) State Lami's theorem.
 - (c) State the principle of conservation of linear momentum.
 - (d) When two parallel forces cannot be compounded into a single resultant force?
 - (e) Define impulsive force with an example.
 - (f) State a necessary and sufficient condition for a system of coplanar forces acting on a rigid body to maintain equilibrium.
 - (g) Define amplitude and frequency of a simple harmonic motion (SHM).
 - (h) Write down the relation between the angle of friction and co-efficient of friction.

- (i) State Newton's that law of motion which defines force as the agent of motion change.
- (j) What is the graphical representation of the moment of a force?
- 2. Answer the following questions: $2 \times 5 = 10$
 - (a) Three equal forces acting at a point are in equilibrium. Show that they are equally inclined to one another.
 - (b) Find the position of centre of gravity (C.G) of a uniform semicircular arc of radius a.
 - (c) Prove that earth's gravitational field is a conservative force field.
 - (d) Two men have to carry a block of stone of weight 70kg on a light plank. How must the block be placed so that one of the men should bear a weight of 10kg more than the other?
 - (e) Prove that the change in kinetic energy of a body is equal to the work done by the acting force.

- 3. Answer the following questions: (any four) 5×4=20
 - (a) Two forces P and Q acting on a particle at an angle α have a resultant $(2k+1)\sqrt{P^2+Q^2}$. When they act at an angle $90^\circ \alpha$, the resultant becomes $(2k-1)\sqrt{P^2+Q^2}$, prove that $\tan \alpha = \frac{k-1}{k+1}$.
 - (b) If the two like parallel forces P and Q acting on a rigid body at A and B be interchanged in position, then show that the point of application of the resultant will be displaced along \overrightarrow{AB} through a distance d where $d = \frac{P-Q}{P+Q}.AB \ (P>Q).$
 - (c) Forces of magnitudes 1, 2, 3, 4, $2\sqrt{2}$ act respectively along the sides \overrightarrow{AB} , \overrightarrow{BC} , \overrightarrow{CD} , \overrightarrow{DA} and the diagonal \overrightarrow{AC} of the square ABCD. Show that their resultant is a couple, and find its moment.

(d) A particle moves towards a centre of attraction starting from rest at a distance a from the centre. If its velocity when at any distance x from the centre

vary as
$$\sqrt{\frac{a^2 - x^2}{x^2}}$$
, find the law of force.

(e) An elastic string without weight, of which the unstretched length is *l* and the modulus of elasticity is the weight of *n* ozs, is suspended by one end, and a mass of *m* ozs. is attached to the other; show that the time of a vertical

oscillation is
$$2\pi\sqrt{\frac{ml}{ng}}$$
.

(f) A particle of mass m is projected vertically under gravity, the resistance of the air being mk times the velocity. Show that the greatest height attained

by the particle is
$$\frac{V^2}{g}[\lambda - \log(1+\lambda)],$$

where V is the terminal velocity of the particle and λV is the initial vertical velocity.

- 4. Answer the following questions: (any four) 10×4=40
 - (a) (i) Forces P, Q, R acting along \overrightarrow{IA} , \overrightarrow{IB} , \overrightarrow{IC} , where I is the in-centre of the triangle ABC, are in equilibrium. Show that

$$P: Q: R = \cos \frac{1}{2}A: \cos \frac{1}{2}B: \cos \frac{1}{2}C$$

- (ii) Forces L, M, N act along the sides of the triangle formed by the lines x+y-1=0, x-y+1=0, y=2. Find the magnitude and the line of action of the resultant.
- (b) A body is resting on a rough inclined plane of inclination α to the horizon, the angle of friction being $\lambda(\alpha > \lambda)$. If the body is acted on by a force P, then find the magnitude of P when
 - (i) the body is just on the point of slipping down.
 - (ii) the body is just on the point of sliding up.
 - (c) (i) Find the C.G of the area of the cardioid $r = a(1 + \cos \theta)$ 5

- (ii) Find the C.G. of the solid formed by the revolution of the quadrant of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ about its minor axis.
- (d) (i) Three forces P, Q, R act in the same sense along the sides \overrightarrow{BC} , \overrightarrow{CA} , \overrightarrow{AB} of a triangle ABC. Show that, if their resultant passes through the centroid, then

PCosec A + QCosec B + RCosec C = 0

5

(ii) Forces P, Q, R, S act along the sides \overrightarrow{AB} , \overrightarrow{BC} , \overrightarrow{CD} , \overrightarrow{DA} of the cyclic quadrilateral ABCD, taken in order, where A and B are the extremities of a diameter. If they are in equilibrium, then prove that

$$R^2 = P^2 + Q^2 + S^2 + \frac{2PQS}{R}$$
 5

(e) The velocities of a particle along and perpendicular to the radius from a fixed origin are λr and $\mu\theta$. Find the path. Also show that the accelerations along and perpendicular to the radius vector

are
$$\lambda^2 r - \frac{\mu^2 \theta^2}{r}$$
 and $\mu \theta \left(\lambda + \frac{\mu}{r} \right)$.

- (f) A particle moves in a straight line OA with an acceleration which is always directed towards O and varies inversely as the square of its distance from O. If initially the particle were at rest at A, show that the time taken by it to arrive
 - at the origin is $\frac{\pi a^{3/2}}{2\sqrt{2\mu}}$.
- (g) Show that the accelerations along the tangent and the normal to the path of a particle are $\frac{d^2s}{dt^2} \left(=v\frac{dv}{ds}\right)$ and $\frac{v^2}{\rho}$, where ρ is the radius of curvature of the curve at the point considered.
- (h) A particle falls under gravity, supposed constant, in a resisting medium whose resistance varies as the square of the velocity. Discuss the motion, if the particle starts from rest.

OPTION-C

Paper: MAT-HE-5036

(Probability and Statistics)

- 1. Answer the following questions: $1 \times 10=10$
 - (a) If A and B are mutually exclusive then find $P(A \cap B)$ and $P(A \cup B)$.
 - (b) Define probability mass function for discrete random variable.
 - (c) If $P(x) = \frac{x}{15}$, x = 1

0, elsewhere

Find $P\{x=1 \text{ or } x=2\}$

(d) If X_1 and X_2 are independent random variables then what will be the modified statement of

$$V(X_1 + X_2) = V(X_1) + V(X_2) + 2cov(X_1, X_2)$$

(e) If a non-negative real valued function f is the probability density function of some continuous random variable, then

what is the value of $\int_{-\alpha}^{\alpha} f(x)dx$?

- (f) Name the discrete distribution for which mean and variance have the same value. What is the value?
- (g) What is meant by mathematical expectation of a random variable?
- (h) Under what condition the binomial distribution becomes the normal distribution.
- (i) Write the equation of line of regression of y on x.
- (i) State weak law of large number.
- 2. Answer the following questions: 2×5=10
 - (a) If the events A and B are independent of A and B separately, is it necessary that they are independent of $A \cap B$?

 Justify.
 - (b) Let X be a random variable with the following probability distribution:

$$x:$$
 -3 6 3
 $P(X = x):$ $\frac{1}{6}$ $\frac{1}{2}$ $\frac{1}{3}$

Find $E(X^2)$

(c) State two properties of Poisson distribution.

(d) If X is a continuous random variable whose probability density function is given by

$$f(x) = c(4x - 2x^2), 0 < x < 2$$

= 0, otherwise

then find the value of c.

- (e) If X is a random variable, then prove that $Var(ax+b) = a^2Var(X)$ where a and b are constants.
- 3. Answer **any four** parts from the following: $5\times4=20$
 - (a) A bag contains 6 white and 9 black balls. Four balls are drawn at a time. Find the probability for the first draw to give 4 white and the second to give 4 black balls if the balls are not replaced before the second draw.
 - (b) The probability density function of a two dimensional random variable (X, Y) is given by

$$f(x, y) = x + y, 0 < x + y < 1$$
0 , elsewhere

Evaluate
$$P\left(X < \frac{1}{2}, Y > \frac{1}{4}\right)$$

- (c) A die is tossed twice. Getting 'a number greater than 4' is considered a success. Find the mean and variance of the probability distribution of the number of success.
- (d) The joint density function of two random variables X and Y is given by

$$f(x, y) = \frac{xy}{96}$$
, 0 < x < 4, 1 < y < 5
0, otherwise

Find

- (i) E(X)
- (ii) E(Y)
- (iii) E(2X+3Y)
- (e) For any two independent random variable X and Y, for which E(X) and E(Y) exists, show that

$$E(XY) = E(X)E(Y)$$

(f) With usual notation for a binomial variate X, given that 9p(X=4)=p(X=2) when n=6Find the value of p and q.

- 4. Answer **any four** parts from the following: 10×4=40
 - (a) (i) If A and B are any two events and are not disjoint then show that $P(A \cup B) = P(A) + P(B) P(A \cup B) .$ Hence find $P(A \cup B \cup C)$.
 - (ii) From a bag containing 4 white and 6 red balls, three balls are drawn at random. Find the expected number of white balls drawn.
 - (b) (i) The joint density function of x and y is given by

and P(X < a).

$$f(x, y) = 2e^{-x}e^{-2y}, 0 < x < \alpha, 0 < y < \alpha$$
0, otherwise

compute $P(X > 1, Y < 1), P(X < Y)$

(ii) If X is a random Poisson variate with parameter m, then show that

$$p(X \ge n) - p(X \ge n+1) = \frac{e^{-m}m^n}{L^n}$$

(c) (i) If X is a binomial variate then prove that

$$Cov\left(\frac{X}{n}, \frac{n-X}{n}\right) = -\frac{pq}{n}$$

- (ii) Show that normal distribution may be regarded as a limiting case of Poisson's distribution on the parameter $m \to \infty$.
- (d) (i) Prove that the moment generating function of the sum of a number of independent random variables is equal to the product of their respective moment generating function.
 - (ii) Define moments and moment generating function of a random variable X. If M(t) is the moment generating function of a random variable X about the origin, show that the moment μ'_r is given by

$$\mu_r' = \left[\frac{d^r M(t)}{dt^r}\right]_{t=0}$$

(e) (i) If $U = \frac{X-a}{h}$, $V = \frac{Y-b}{k}$ where a, b, h, k are constants, h > 0, k > 0 then show that r(X,Y) = r(U,V).

(r represents the correlation co-efficient)

(ii) The two regression equations of the variables x and y are

$$x = 19.13 - 0.87y$$

 $y = 11.64 - 0.50x$

Find (1) mean of x's

- mean of y's
 - \widehat{n} correlation co-efficients between x and y.
- (f) (i) Find the mean and variance of a Binomial distribution.
 - (ii) If X is a random variable with mean μ and variance σ^2 then for any positive number k, prove that

$$p\{|X-\mu| \ge k\sigma\} \le \frac{1}{k^2}$$

(g) (i) A function f(x) of x is defined as follows:

$$f(x) = 0$$
 for $x < 2$
= $\frac{1}{18}(3 + 2x)$ for $2 \le x \le 4$
= 0 for $x > 4$

Show that it is a density function. Also find the probability that a variate with this density will lie in the interval $2 \le x \le 3$.

(ii) Two random variables *X* and *Y* have the following joint probability distribution function.

$$f(x, y) = 2 - x - y, 0 \le x \le 1, 0 \le y \le 1$$

= 0 otherwise

- Find (l) marginal density function
 - (m) E(X) and E(Y)
 - (n) conditional density function
- (h) (i) Show that Poisson distribution is a limiting case of the Negative Binomial Distribution.
 - (ii) Let the random variable X_i assume values i and -i with equal probabilities. Show that the law of large number cannot be applied to the independent variables X_1 , X_2 , X_3 , X_n .