4

Results

4.1 Biochemical changes in the tea plant in response to TMB-herbivory

4.1.1 Total phenolic content

The total phenolic content of the tea tissues (two leaves and a bud) was found to be reduced in the infested samples of all of the clones studied. However, none of the infested clones exhibited significant decrease in total phenolic content when compared with the non-infested healthy ones. Overall, the total phenolic content was found to be much higher in the Darjeeling clones i.e., P312 and AV2.

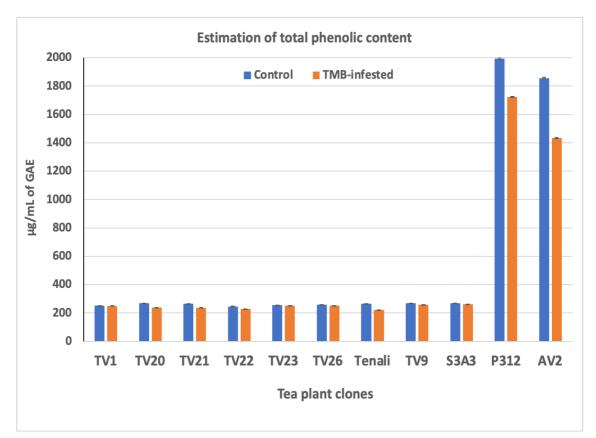


Fig. 4.1 Total phenolic content in 11 clones of tea plant. (Data is represented as mean \pm SE, n = 3). Statistical significance was calculated through a one-way ANOVA. P-value \leq 0.05 was used as the significance value.

4.1.2 Total flavonoid content

The infested tea plants exhibited higher total flavonoid content than the healthy plants in all of the clones studied. This increase in total flavonoid content is found to be significant in all of the clones. Higher flavonoid content in response to TMB herbivory might attribute to the purpose of flavonoids as defense secondary metabolites that have insect repellent and insect toxic properties.

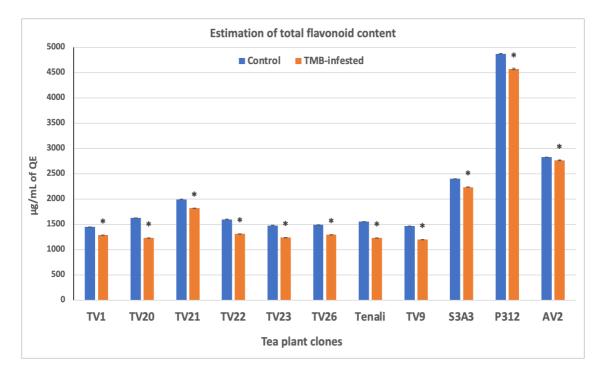


Fig. 4.2 Total flavonoid content in 11 clones of tea plant. (Data is represented as mean \pm SE, n = 3). Statistical significance was calculated through a one-way ANOVA followed by a post-hoc t-test with Bonferroni's correction method. P-value ≤ 0.05 was used as the significance value. Statistically significant data are represented with *.

4.1.3 Enzymatic antioxidants

We determined the enzymatic antioxidant activities of the tea plants and compared the enzymatic activities of infested tissues with the non-infested tissues. In general, POX, APX, PAL, PPO and CAT activities were influenced by TMB herbivory in the plant.

4.1.3.1 Peroxidase (POX) activity

The activity of POX was significantly increased in response to TMB feeding in all of the studied tea plant clones. POX activity was seen to be highest in TV1 relative to the other clones. TV20 and Tenali showed lesser POX activity in general.

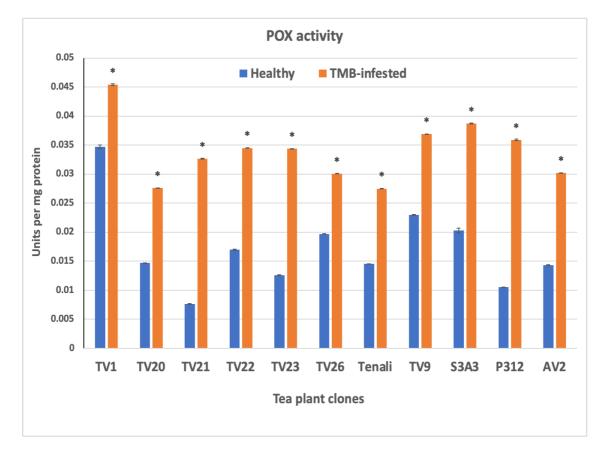


Fig. 4.3 POX activity in 11 clones of tea plant. (Data is represented as mean \pm SE, n = 3). Statistical significance was calculated through a one-way ANOVA followed by a posthoc t-test with Bonferroni's correction method. P-value ≤ 0.05 was used as the significance value. Statistically significant data are represented with *.

4.1.3.2 Ascorbate peroxidase (APX) activity

TMB feeding influenced a tremendous increase in APX activity of the tea plants infested by TMB than the control plants. All of the clones showed significant elevation of APX activity when infested by the insect. TV22 exhibited the highest APX activity among all the clones, while TV23 exhibited the lowest.

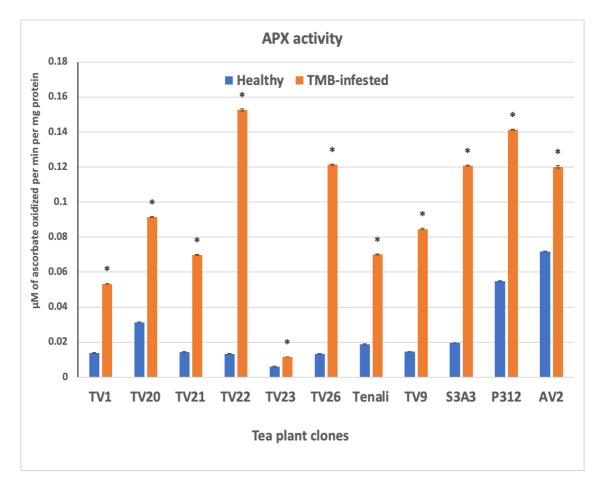


Fig. 4.4 APX activity in 11 clones of tea plant. (Data is represented as mean \pm SE, n = 3). Statistical significance was calculated through a one-way ANOVA followed by a posthoc t-test with Bonferroni's correction method. P-value ≤ 0.05 was used as the significance value. Statistically significant data are represented with *.

4.1.3.3 Phenylalanine ammonia lyase (PAL) activity

The activity of PAL was also seen to be increased in the infested plants. However, this increase was not significant in TV1 and P312, while the others showed significant increase in the enzyme activity. Clone S3A3 showed the highest PAL activity, while TV23 the lowest.

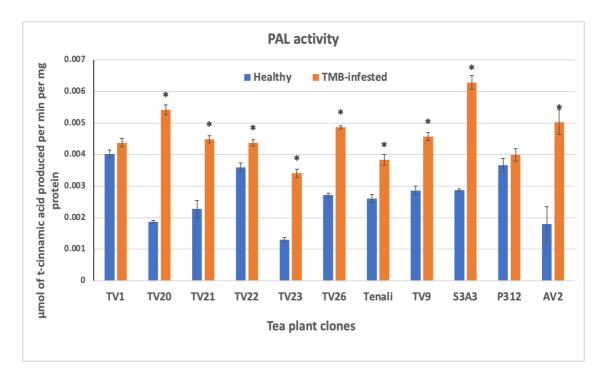


Fig. 4.5 PAL activity in 11 clones of tea plant. (Data is represented as mean \pm SE, n = 3). Statistical significance was calculated through a one-way ANOVA followed by a posthoc t-test with Bonferroni's correction method. P-value ≤ 0.05 was used as the significance value. Statistically significant data are represented with *.

4.1.3.4 Polyphenol oxidase (PPO) activity

The activity of the enzyme PPO was seen to be increased in the infested plants belonging to all clones except TV1, where it was seen to be significantly decreased. P312 exhibited the highest PPO activity among all the clones, followed by AV2, Tenali and TV21.

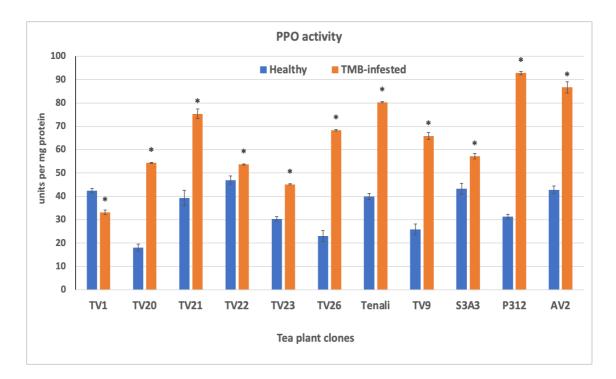


Fig. 4.6 PPO activity in 11 clones of tea plant. (Data is represented as mean \pm SE, n = 3). Statistical significance was calculated through a one-way ANOVA followed by a posthoc t-test with Bonferroni's correction method. P-value ≤ 0.05 was used as the significance value. Statistically significant data are represented with *.

4.1.3.5 Catalase (CAT) activity

TMB feeding impacted CAT enzymatic activity too. CAT activity was found to be tremendously increased in all of the infested clones. This increase in activity was noted highest in AV2, followed by P312, TV9 and TV1. All the clones showed significant elevation of CAT activity in the TMB-stressed plants.

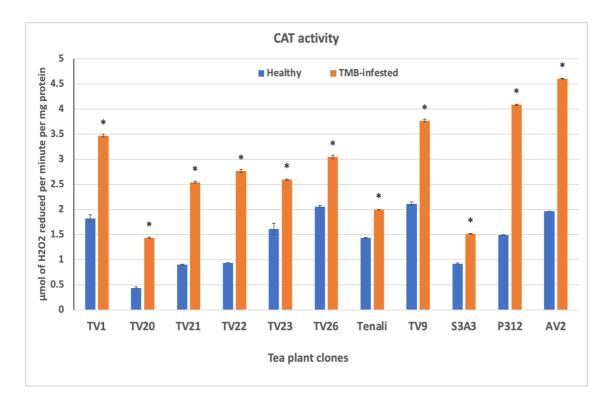


Fig. 4.7 CAT activity in 11 clones of tea plant. (Data is represented as mean \pm SE, n = 3). Statistical significance was calculated through a one-way ANOVA followed by a posthoc t-test with Bonferroni's correction method. P-value ≤ 0.05 was used as the significance value. Statistically significant data are represented with *.

4.2 Sequencing reads summary

Trimming of adapters from sequencing data and subsequent assessment of quality of the reads generated from the high-throughput sequencing showed that quality score of all six libraries (Control-1, Control-2, Control-3, Infested-1, Infested-2, Infested-3) were in range of 28-40, with 39 as the average read quality score, which is a good phred quality score for data analysis. The figures of data quality check are included in the Appendix section.

We obtained an average of 14.7 gb of clean data for each of the six libraries. The clean reads were successfully aligned to *C. sinensis* reference genome (Xia *et al.* 2020) with an average of 80.83 % alignment rate for healthy and TMB-infested RNA-seq

libraries. In total, 154463 transcripts were obtained after transcriptome assembly and reconstruction. Table 4.1 shows summary of the alignment of the six libraries.

Table 4.1 Summary of reads generated from control and TMB-infested tea samples

Sample	Clean reads	Mapped reads	Reads mapped 0 times	Reads mapped exactly 1 time	Reads mapped > 1 time	GC %
Control-1	37232696	30985049 (83.22%)	7654183	10722775	18855738	53
Control-2	46627161	38597963 (82.78%)	9964320	14226132	22436709	52
Control-3	35846318	29698674 (82.85%)	7633635	10709863	17502820	52
Infested-1	44100615	34292638 (77.76%)	11608865	12376846	20114904	52
Infested-2	46777943	36772141 (78.61%)	11834865	12784517	22158561	53
Infested-3	45820093	36550688 (79.77%)	11009782	11330617	23479694	53

4.3 LncRNAs

4.3.1 Identification of IncRNAs

The obtained 154463 transcripts underwent a series of screening for prediction of lncRNAs in the libraries. Discarding of transcripts based on class codes, number of exons, ORF length and length of nucleotides, resulted in 21017 transcripts. Of them, CPC, CNCI

and PLEK softwares predicted 1617 transcripts to have coding potential. The remaining filtered transcripts were put under stringent criteria to eliminate any of them showing sequence homology with known proteins and housekeeping RNAs. A total of 9502 transcripts were identified as putative candidate lncRNAs from control and TMB infested tissues.

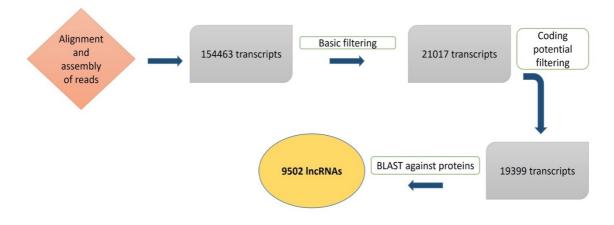


Fig. 4.8 Filtering of transcripts for identification of putative lncRNAs

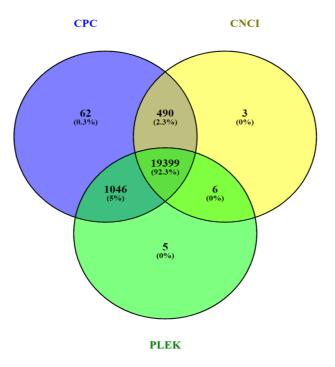


Fig. 4.9 Coding potential analysis of the assembled transcripts through three tools

4.3.2 Characterization of IncRNAs

Analysis of the chromosomal distribution of pattern of lncRNAs revealed that among the 15 chromosomes, chromosome 1 of the *C. sinensis* genome contained the most number of lncRNAs i.e., 733.

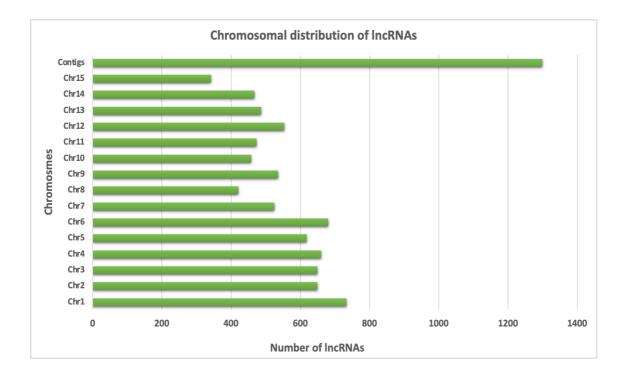


Fig. 4.10 Chromosomal distribution of identified lncRNAs

Based on their genomic positions, the predicted lncRNAs were subdivided into various classes. Majority of the lncRNAs (70.56%) were found to be lincRNAs i.e., they originated from intergenic/unknown regions of the genome (class code "u"), the second most abundant class of lncRNAs (17.35%) was intronic lncRNAs (incRNAs) that were predicted from introns of coding genes (class code "i") followed by sense lncRNAs (9.5%) that exhibited exonic overlaps (class code "o") and the least abundant group of lncRNAs (2.56%) was antisense lncRNAs (lncNATs) that were identified from antisense strand of coding genes (class code "x").

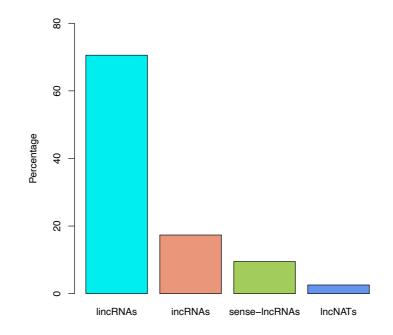


Fig. 4.11 Classification of identified lncRNAs based on their genomic position

To understand sequence conservation and similarity among plant lncRNAs, we conducted a conservation analysis of the identified lncRNAs by running a BLAST search against lncRNAs of several plant species deposited in CANTATAdb (Szcześniak *et al.* 2019), GreeNC (Gallart *et al.* 2016) and NONCODE (Liu *et al.* 2005) databases. In total, only 82 lncRNAs (0.86%) identified in this study were homologous with lncRNAs of 34 plant species implying that *C. sinensis* lncRNAs are poorly conserved among those of other plant species. Majority of the BLAST hits was recorded from lncRNAs of *Triticum aestivum* (12.36%) followed by those of *Medicago truncatula* (9.74%), *Chenopodium quinoa* (9.21%), *Brassica napus* (8.16%) and *Vitis vinifera* (8.16%).

The length distribution and exon numbers of lncRNAs illustrated that most of the lncRNAs (62.14%) were found to be < 400 nucleotides in length and only a few of them (4.58%) were longer than 1000 bp. The average length of the lncRNAs was 432 nucleotides. The lncRNAs exhibited exon numbers in a range of 2-8 where 83.6% comprised of two exons and only 0.01% had eight exons (Fig. 4.12).

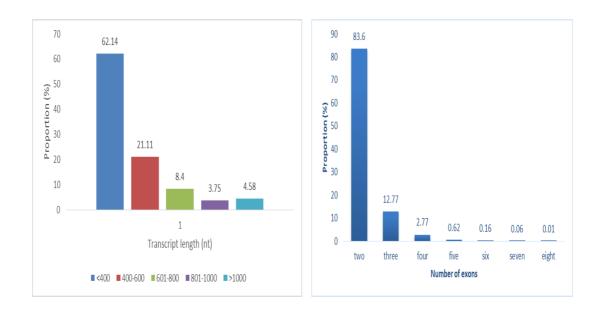


Fig. 4.12 Length distribution and number of exons found in the identified lncRNAs

4.3.3 Expression of IncRNAs

Out of 9502 lncRNAs, 6703 lncRNAs were expressed in healthy and infested tissues, 1656 lncRNAs were selectively expressed in healthy tissues and 1142 lncRNAs were specific to TMB infested tissues (Fig. 4.13) The FPKM values of expression levels of identified lncRNAs in the six samples has been shown in Fig 4.14.

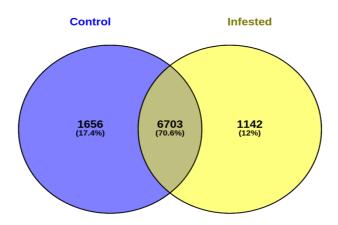


Fig. 4.13 A venn diagram showing number and proportion of lncRNAs expressed in the healthy/control and TMB-infested samples

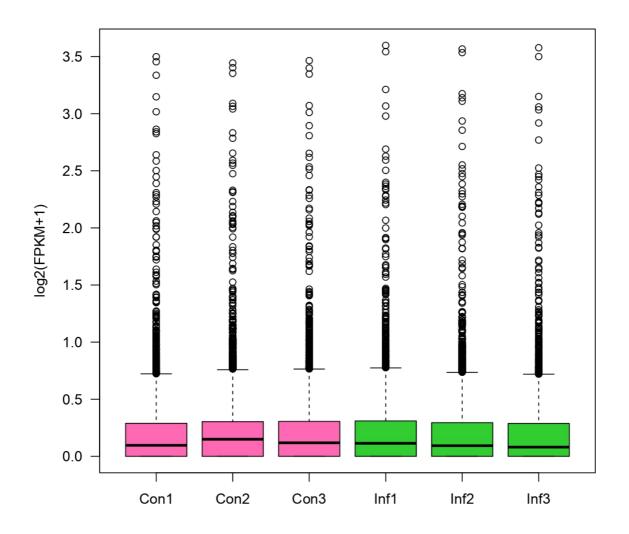


Fig. 4.14 Boxplot showing log2 values of FPKM+1 of lncRNAs in the healthy/control and TMB-infested samples

4.3.4 Differential expression of lncRNAs

To analyse the lncRNAs that were differentially abundant during healthy v/s infested condition, filtering out of lowly expressed lncRNAs was carried out and DE analysis was performed. It was revealed that 80 lncRNAs got differentially expressed in this study, out of which, expression of 46 DELs got down-regulated and 34 DELs got up-regulated in expression in the infested tissues.

IncRNA ids	log2FoldChange	padj (adjusted p-value)
TCONS_00116642	1.629913187	4.98E-32
TCONS_00102742	-3.04336472	9.04E-28
TCONS_00072135	-1.272696609	1.44E-17
TCONS_00123076	-5.233109775	1.44E-17
TCONS_00087320	-1.217454742	9.85E-16
TCONS_00078068	-1.354038746	1.28E-15
TCONS_00152106	-3.735200452	2.09E-13
TCONS_00076726	-3.08965386	6.08E-12
TCONS_00061691	2.634421841	9.74E-12
TCONS_00099260	-2.917861313	1.66E-11
TCONS_00040585	3.137312716	1.85E-11
TCONS_00025347	1.685679763	2.34E-11
TCONS_00024234	1.653065071	1.13E-10
TCONS_00028490	-2.154754878	1.94E-09
TCONS_00021732	1.481910798	4.38E-09
TCONS_00125414	-3.019906926	0.00000011
TCONS_00131931	2.898828059	2.26E-08
TCONS_00068537	1.710313098	2.94E-08
TCONS_00106979	-1.080193716	0.00000355
TCONS_00132530	-2.095719912	0.00000487
TCONS_00124553	-1.410040435	0.00000886
TCONS_00033045	-2.490444256	0.000207982
TCONS 00001085	1.328858679	0.000310822
TCONS_00149807	-1.939998024	0.000374853
TCONS_00032903	-1.723461579	0.000419851
TCONS_00125996	-1.260226525	0.000444479
TCONS_00057770	-1.457113911	0.000469516
TCONS_00083012	-1.804519284	0.000553373
TCONS_00115467	-1.428792536	0.000676592
TCONS_00096802	-1.448779234	0.00107357
TCONS_00104371	-2.37352162	0.00107357
TCONS_00015431	2.022460866	0.001078514
TCONS_00088006	1.415406426	0.00161464
TCONS_00096174	1.345072461	0.001729568
	2.653741968	0.001812695
	-1.298566434	0.002027731
	-1.293919388	0.00221069
	-2.188624516	0.002697755
	1.473745208	0.003767827
	1.555042651	0.00427081
	1.863903392	0.004689968
	-2.521670151	0.005162279
TCONS 00128571	-1.185455614	0.005375332

Table. 4.2 List of DELs with their log2 fold change and p-values

TCONS_00138715	1.590828065	0.007942299
TCONS_00083139	-2.344465683	0.009153549
TCONS_00038960	-1.038225519	0.00925177
TCONS_00126492	2.245784682	0.010059249
TCONS_00054633	2.723249984	0.011097888
TCONS_00147455	-1.625458509	0.012741807
TCONS_00143159	-1.800273796	0.012970215
TCONS_00073904	2.542205198	0.013820436
TCONS_00090137	1.484986476	0.017092866
TCONS_00114397	-1.652541158	0.017092866
TCONS_00083891	2.059948119	0.01807411
TCONS_00053665	-2.129413483	0.01807411
TCONS_00069554	-2.892179847	0.01807411
TCONS_00037756	-1.64049422	0.018164307
TCONS_00118970	1.11197076	0.020843541
TCONS_00062765	-1.86932069	0.020843541
TCONS_00063108	-1.376047338	0.021070118
TCONS_00070825	2.012492113	0.022920458
TCONS_00088007	1.554636651	0.023443674
TCONS_00108694	-2.830096319	0.024484914
TCONS_00027659	1.413824045	0.024574258
TCONS_00096953	1.005862266	0.024574258
TCONS_00096952	1.005862266	0.024574258
TCONS_00022462	-1.204577054	0.025985081
TCONS_00115148	2.561032362	0.026953448
TCONS_00129063	-1.309620635	0.026953448
TCONS_00041416	-1.56653296	0.026953448
TCONS_00038780	-2.199729209	0.027379295
TCONS_00054408	2.177851665	0.029646844
TCONS_00023432	2.293501192	0.033196624
TCONS_00039217	-1.149251467	0.033196624
TCONS_00060498	-1.221473001	0.033196624
TCONS_00152746	-1.244607982	0.033196624
TCONS_00025819	1.234634355	0.033591812
TCONS_00077127	-1.828108717	0.036260749
TCONS_00059256	2.250874959	0.039076601
TCONS_00024800	1.390618204	0.039076601

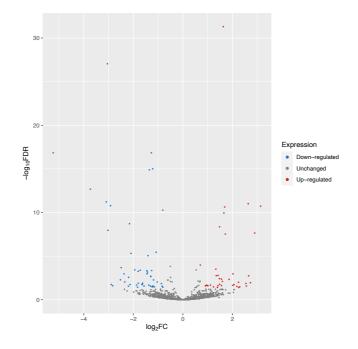


Fig. 4.15 Volcano plot showing the differential expression of lncRNAs in control v/s TMB-infested samples

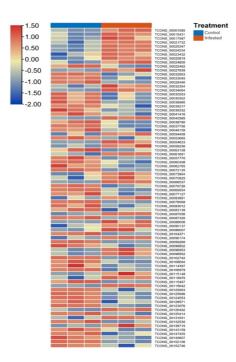


Fig. 4.16 Heatmap showing the differential expression pattern of lncRNAs in the six RNA-seq libraries. Blue colour represents low expression and red colour depicts high expression.

4.3.5 Identification of lncRNA-target genes

LncRNAs are reported to act on protein-coding genes through *cis* and *trans*-regulation. To find out potential protein-coding genes that might be regulated by lncRNAs through *cis*-acting mode, we screened for genes residing 10 kb upstream or downstream of identified lncRNAs. It was found that 2106 lncRNAs identified in this study were located in close proximity with 1916 protein-coding genes and these were identified as *cis*-targets of lncRNAs. The potential *trans*-acting effects of lncRNAs was determined for the genes by testing the RNA-RNA hybrid forming ability of lncRNA-mRNA pairs and co-expression analysis between DEL-DEG pairs applying stringent criteria for hybridization energy threshold and PCC respectively. A total of 787 genes were found to be *trans*-targets of lncRNAs by RNA-RNA hybrid forming potential of lncRNAs. The PCC for normalized expression values of DEL-DEG pairs was determined and pairs that did not meet the required criteria were discarded. In total, 76,442 positive and 49,553 negative associations were predicted for 80 DELs and 3509 DEGs. Summarizing the results we identified 5804 genes as potential lncRNA-targets.

Table. 4.3 Results of lncRNA-cis target hybrid formation analysis using RIBlast algorithm

Query name	Query	Target name	Target	Accessibility	Hybridization	Interaction
	Length		Length	Energy	Energy	Energy
TCONS_00003433	239	CSS0030542.1	1575	13.9607	-44.88	-30.9193
TCONS_00010009	222	CSS0004587.1	783	18.7477	-34.35	-15.6023
TCONS_00010009	222	CSS0032635.1	642	19.57	-40.94	-21.37
TCONS_00010009	222	CSS0018280.1	1359	16.0717	-42.58	-26.5083
TCONS_00010009	222	CSS0041917.1	687	18.9569	-40.71	-21.7531
TCONS_00010009	222	CSS0009579.1	681	17.1214	-38.66	-21.5386
TCONS_00010009	222	CSS0002303.1	2016	17.9971	-39.08	-21.0829

TCONS_00010009	222	CSS0035558.1	2481	15.795	-34.7	-18.905
TCONS_00016834	408	CSS0038642.1	2997	15.06	-55.21	-40.15
TCONS_00018213	658	CSS0033733.1	870	55.6281	-200.31	-144.682
TCONS_00033171	227	CSS0008052.1	1500	6.91269	-34.01	-27.0973
TCONS_00033171	227	CSS0018018.1	783	8.83517	-36.02	-27.1848
TCONS_00033171	227	CSS0018018.1	783	9.40424	-34.93	-25.5258
TCONS_00033171	227	CSS0037843.1	2076	3.48502	-33.21	-29.725
TCONS_00033171	227	CSS0009305.1	3294	7.54897	-34.85	-27.301
TCONS_00033171	227	CSS0002932.1	609	11.1142	-37.74	-26.6258
TCONS_00057665	641	CSS0032713.1	1731	13.8173	-36.48	-22.6627
TCONS_00057665	641	CSS0020268.1	3150	12.7416	-31.02	-18.2784
TCONS_00057665	641	CSS0005639.1	981	10.5824	-54.31	-43.7276
TCONS_00057665	641	CSS0041371.1	3810	16.2892	-34.7	-18.4108
TCONS_00057665	641	CSS0008429.1	1401	19.4689	-38.68	-19.2111
TCONS_00057665	641	CSS0038642.1	2997	11.8746	-35.95	-24.0754
TCONS_00057665	641	CSS0048765.1	840	13.2746	-40.79	-27.5154
TCONS_00057665	641	CSS0036298.1	627	13.3758	-31.7	-18.3242
TCONS_00057665	641	CSS0007810.1	1794	15.8229	-37.49	-21.6671
TCONS_00057665	641	CSS0037673.1	1095	11.4089	-33.15	-21.7411
TCONS_00057665	641	CSS0037673.1	1095	12.5475	-32.79	-20.2425
TCONS_00087135	358	CSS0008052.1	1500	6.20285	-32.57	-26.3671
TCONS_00087135	358	CSS0037843.1	2076	3.77097	-34.51	-30.739

4.3.6 Functional annotation and enrichment analysis of lncRNAs

The functional annotation and enrichment analysis of lncRNA-targets revealed that these genes were enriched in 378 GO terms including 310 under biological process, 30 under cellular component and 38 under molecular function. The top 30 terms are being shown in Fig. 4.17. It is interesting to note that expression of lncRNA-targets were suppressed in GO terms related to cell cycle, nuclear division, organelle fission. Whereas a significant set of genes were upregulated in GO terms associated with cellular response to phosphate

starvation, transferase, oxidoreductase and dioxygenase activity, response to chemical/oxygen-containing compound, metal-ion binding etc. (Fig. 4.18).

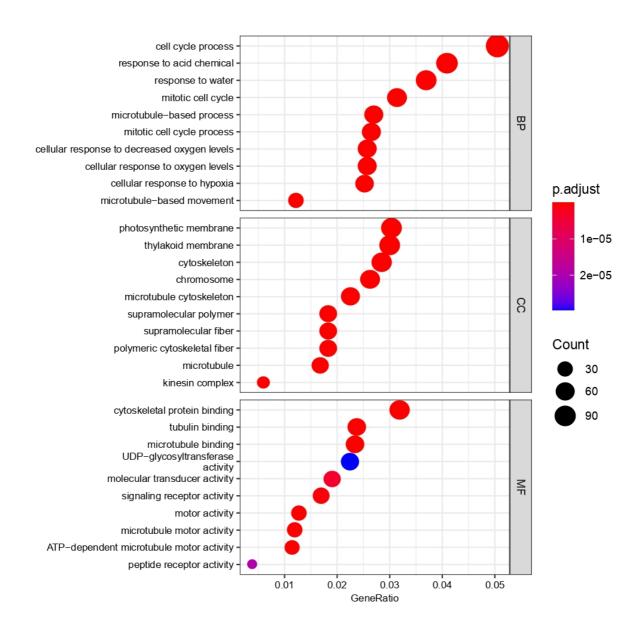


Fig. 4.17 GO enrichment of lncRNA-target genes. BP; Biological processes, CC; Cellular component, MF; Molecular function. The size of the bubble represents number of lncRNA-target genes assigned to the particular GO term and the color of the bubble represents adjusted p-value (q value).

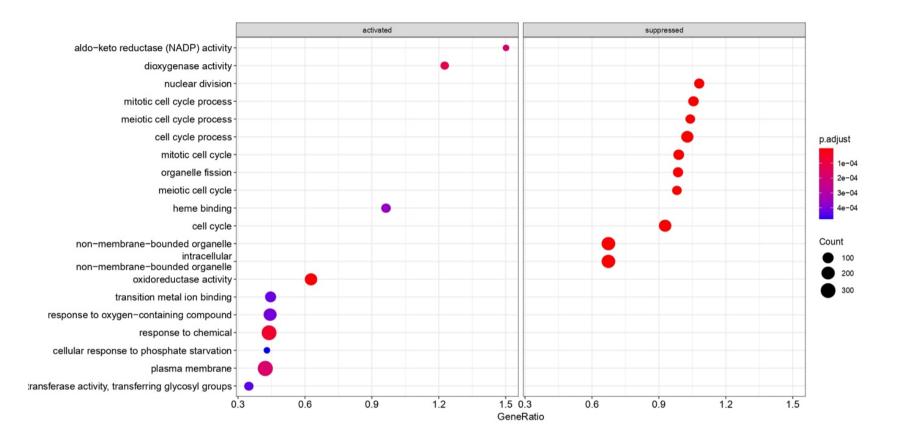


Fig. 4.18 Gene set enrichment analysis based on GO enrichment of lncRNA-target genes. The left halve represents terms upregulated in response to TMB and the right halve represents terms downregulated in response to TMB. The size of the bubble represents number of lncRNA-target genes assigned to the particular GO term and the color of the bubble represents adjusted p-value (q value).

Additionally, GSEA for KEGG pathways has shown that lncRNA-target genes were enriched in 20 KEGG pathways, out of which, pathways like biosynthesis of Nglycans, endocytosis, amino sugar and nucleotide sugar metabolism were suppressed. In contrast, pathways related to photosynthesis, biosynthesis of secondary metabolites, terpenoids biosynthesis, metabolic pathways of certain amino acids like beta-alanine tryptophan, cysteine, methionine, tyrosine got activated (Fig 4.19).

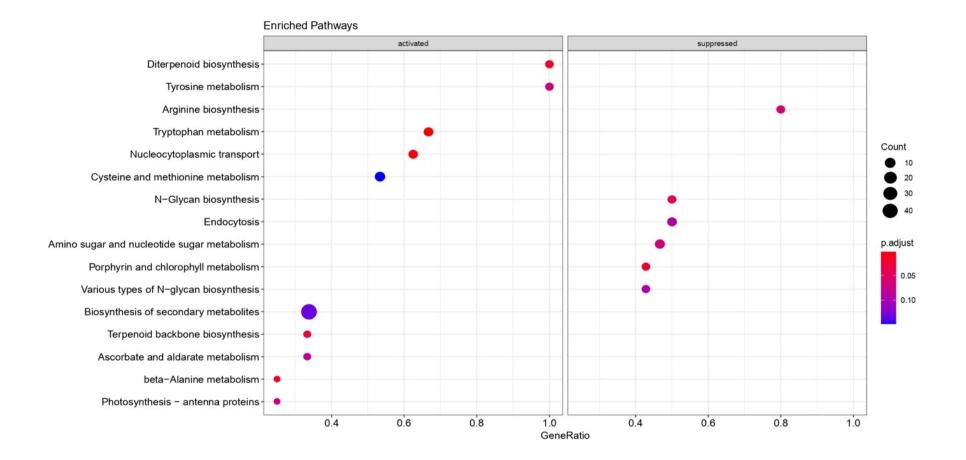


Fig. 4.19 Gene set enrichment analysis based on KEGG pathway enrichment of lncRNA-target genes. The left halve represents pathways upregulated in response to TMB and the right halve represents pathways downregulated in response to TMB. The size of the bubble represents number of lncRNA-target genes assigned to the particular KEGG pathway and the color of the bubble represents adjusted p-value (q value).

To understand the possible functions of identified lncRNAs, further pathway mapping for the lncRNA-target genes was performed using the BlastKOALA web version (Kanehisa *et al.* 2016). Results showed that the lncRNA-target genes belonged to certain important pathways. Some of them include terpenoid biosynthesis, flavonoid biosynthesis, zeatin biosynthesis, plant hormone signal transduction, MAPK signalling pathway, linoleic-acid metabolism, brassinosteroid biosynthesis. LncRNA-target genes belonging to the abovementioned pathways were also screened for their expression patterns during TMBinfested and non-infested conditions. The expression heatmaps for lncRNA-target genes associated with these pathways is represented in Fig. 4.20.

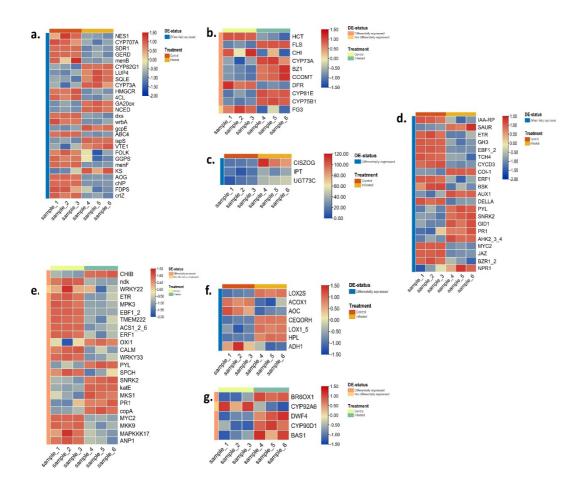


Fig. 4.20 Heatmaps showing expression patterns of lncRNA-target genes in different biological pathways (a) Terpenoids biosynthesis (b) Flavonoids biosynthesis (c) Zeatin biosynthesis (d) Plant hormone signal transduction (e) MAPK signaling pathway (f) Linoleic-acid metabolism (g) Brassinosteroids biosynthesis

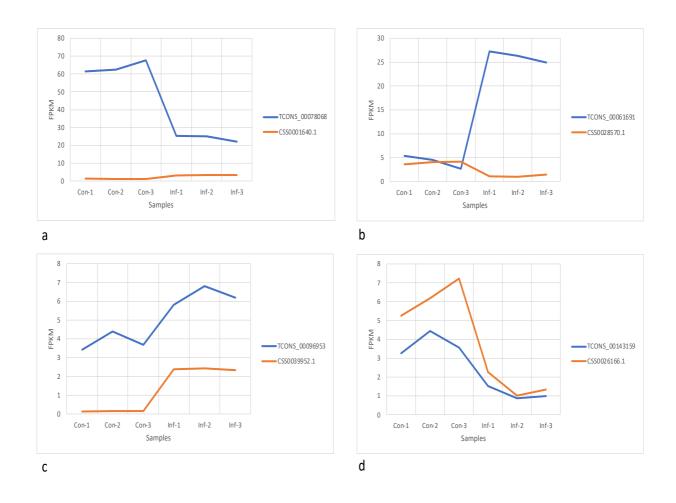


Fig. 4.21 Graphs showing positive/negative expression correlation between lncRNA and lncRNA-target genes. Blue line signifies FPKM values (x-axis) of lncRNAs and red line signifies FPKM values (x-axis) of lncRNA-target genes. Figures a and b denote negative correlation between lncRNA-mRNA pairs, figures c and d denote positive correlation between the pairs.

4.3.7 Quantitative real-time PCR of selected DELs

The qRT-PCR result has shown the differential up/down regulation of DELs selected for this analysis. The qRT-PCR analysis reveals that the expression of selected lncRNAs was found to be more or less consistent with the results of RNA-seq data.

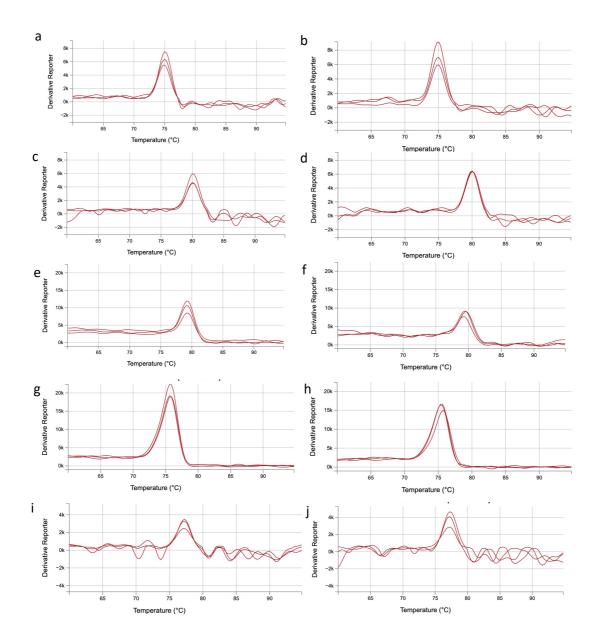


Fig. 4.22 Melt curve plots of DELs TCONS_00040585 (a and b), TCONS_00083891 (c and d), TCONS_00096174 (e and f), TCONS_00032903 (g and h) and TCONS_00099260 (i and j) in control and TMB-infested samples

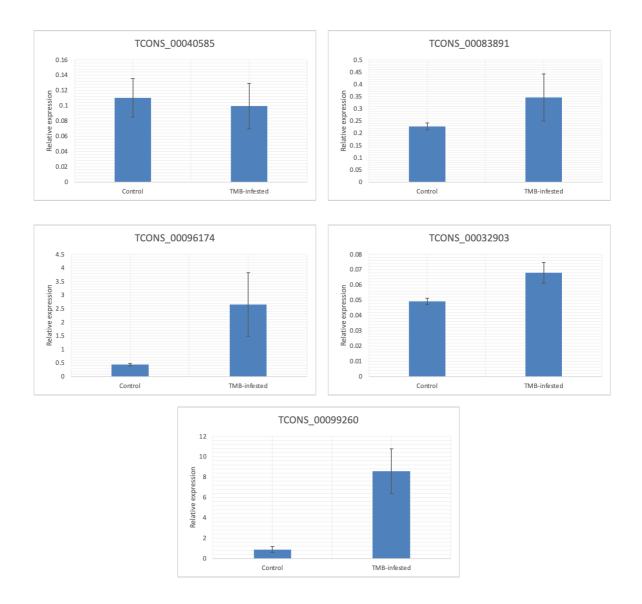


Fig. 4.23 Bar diagrams showing result of qRT-PCR analysis of 5 DELs in control v/s TMB-infested samples. Values in the y-axis determine the relative expression of DELs normalized to UBC1 gene. Error bars indicate ±SEM of relative expression of triplicates.

4.4 Genes

4.4.1 Expression of genes

StringTie software was used to estimate the FPKM values for genes and 36644 genes were found to be expressed in at least one of the RNA-seq libraries of this study. The FPKM values of the genes in the libraries has been visualized in Fig. 4.24.

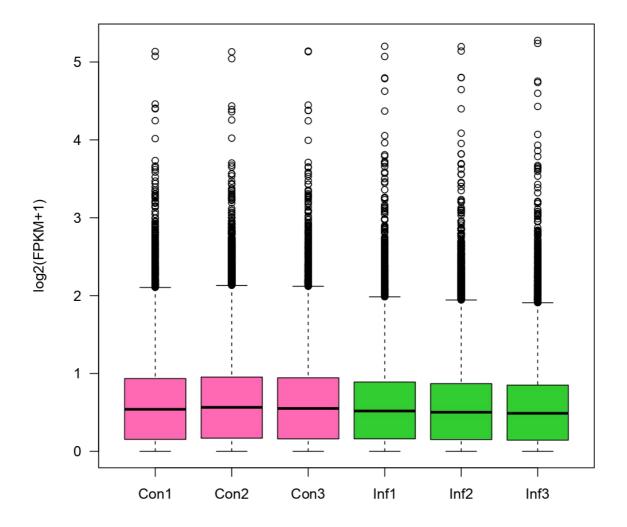


Fig. 4.24 Boxplot showing log2 values of FPKM+1 of genes in the healthy/control and TMB-infested samples

Expression of 1599 genes were limited to only the infested tissues whereas 2375 genes were expressed only in the healthy/uninfested leaves.

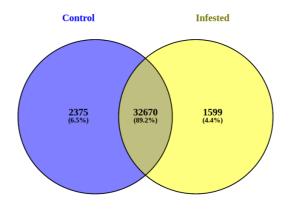


Fig. 4.25 A venn diagram showing number and proportion of genes expressed in the healthy/control and TMB-infested samples

4.4.2 Differential expression of genes

DE analysis revealed that 3665 genes were differentially expressed during healthy v/s infested condition, of which 1767 genes showed increase in expression and 1898 showed decreased expression in the TMB infested *C. sinensis* tissues. The apparent expression variations in DEGs are visualized using volcano plots and heatmaps (Fig. 4.26).

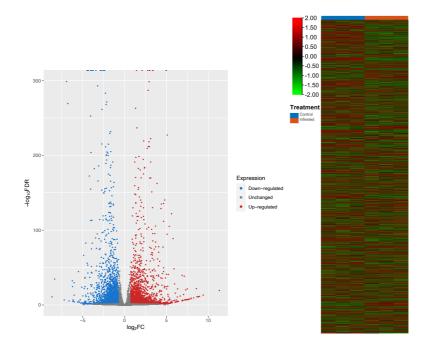


Fig. 4.26 Volcano plot and expression heatmap depicting DEGs

4.4.3 Functional annotation and enrichment analysis of DEGs

The GSEA of differentially expressed genes elucidated that a significant set of genes were associated with 771 GO terms (481 under biological process, 103 under cellular compartment and 187 under molecular function) and the expression of the gene sets were either suppressed or activated in the GO terms. Gene sets of DEGs were activated in GO terms like "secondary metabolic process", "response to external biotic stimulus", "response to other organism", "oxidoreductase activity", "dioxygenase activity" etc., which revealed that the DEGs are involved in response of the tea plant to biotic stress or foreign biotic stimuli like insect elicitors. Adding to that, set of genes in GO terms like "mitotic cell cycle process", "nuclear division", "microtubule motor activity and binding", "organelle fission" etc. were found to be suppressed during the infested condition (Fig. 4.27).

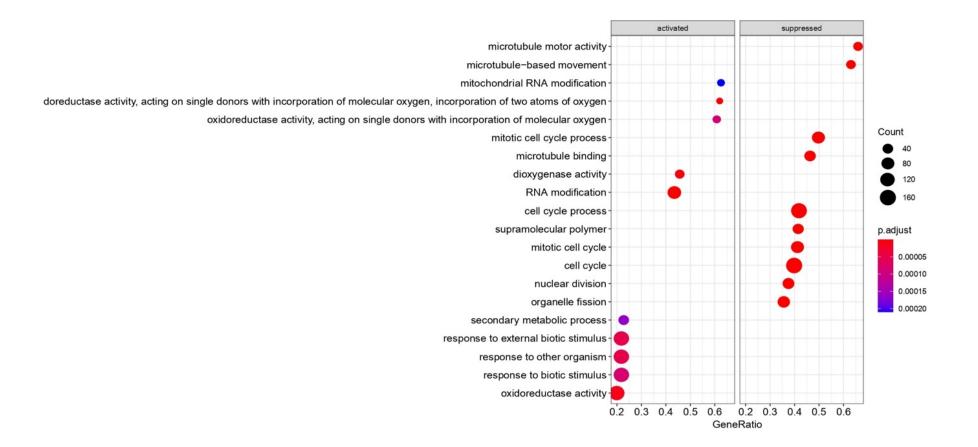


Fig. 4.27 Gene set enrichment analysis based on GO enrichment of DEGs. The left halve represents terms upregulated in response to TMB and the right halve represents terms downregulated in response to TMB. The size of the bubble represents number of DEGs assigned to the particular GO term and the color of the bubble represents adjusted p-value (q value).

The DEGs were found to be enriched in 26 significant KEGG pathways. In response to TMB infestation, significant set of genes were activated in 17 KEGG pathways including those for terpenoids metabolism, cell signalling pathways (MAPK), amino acid metabolism like tryptophan and cyanoamino acid (Fig. 4.28). Terpenoids possess insect/pathogen deterrent properties and have significant role in plant-insect interaction such as priming defense responses in neighbouring plants (Sharma et al. 2017). Upregulation of terpenoid synthesizing genes in our study signifies the involvement of terpenoids in tea plant's defense against the feeding insect. MAPKs play critical role in activation of herbivore induced defense responses in plants by accumulation of plant defense metabolites against insects and modulate herbivory induced phytohormonal dynamics of SA, JA and ET. Two MAPKs viz. salicylic-acid induced protein kinase (SIPK) and wound induced protein kinase (WIPK) get rapidly induced in response to insect OS and play roles in PAMPs (Pathogen associated molecular patterns) triggered immunity or PTI. Activation of MAPKs in response to wounding and insect herbivory has been observed in many studies (Seo et al. 1995; Wu et al. 2007; Kandoth et al. 2007; Sözen et al. 2020). Induction in expression of genes related to MAPK signalling pathway in this study is indicative of the involvement of MAPKs in tea plant's response to TMB. Tryptophan is associated with the production of phytohormone auxin and plant defensive compounds (Celenza, 2001), therefore upregulation of genes belonging to tryptophan metabolism pathway is self-explanatory. Additionally, genes for zeatin, betalain and alkaloids biosynthesis, all of which have wellknown defensive functions, were also seen to get upregulated in this study. Concomitantly, 9 KEGG pathways got suppressed during TMB infestation on C. sinensis. This includes carotenoids and amino acids biosynthesis, base excision repair (BER),

amino and nucleotide sugar metabolism etc. Exposure to abiotic/biotic stresses leads to DNA damage and maintenance of genome integrity in eukaryotes is executed by DNA repair mechanisms like BER (Nisa *et al.* 2019). Literature suggests that microbial pathogens induce DNA double-strand breaks in host plant DNA (Song and Bent, 2014) and hence it can be speculated that suppression of BER mechanism in the tea plant is an indication of successful pathogenesis. Changes in carbohydrate (sugar) and nitrogen (amino acids) metabolism during insect stress can be either attributed to a means of plant defense response or to insect manipulation of host plant metabolism.

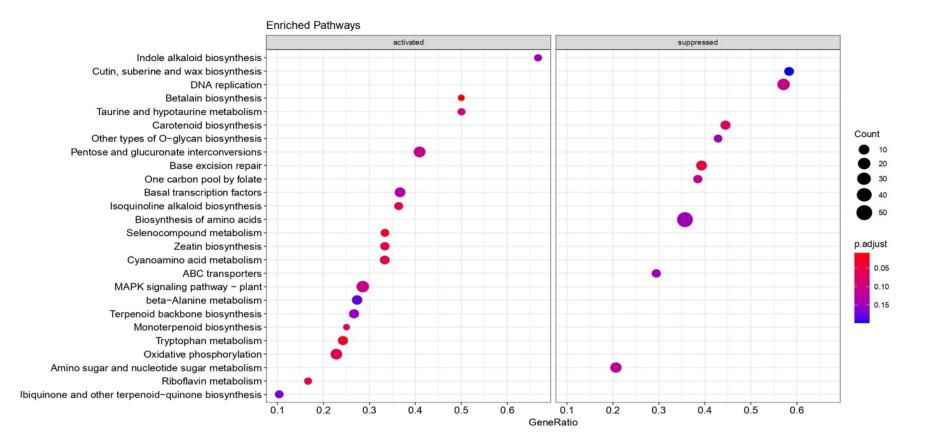


Fig. 4.28 Gene set enrichment analysis based on KEGG pathway enrichment of DEGs. The left halve represents pathways upregulated in response to TMB and the right halve represents pathways downregulated in response to TMB. The size of the bubble represents number of DEGs assigned to the particular KEGG pathway and the color of the bubble represents adjusted p-value (q value).

4.4.4 Quantitative real-time PCR of selected DEGs

The result of qRT-PCR has validated the differential expression pattern of the 6 selected DEGs. The qRT-PCR results of the selected DEGs was found to be more or less consistent with the RNA-seq data (Fig. 4.29 and 4.30).

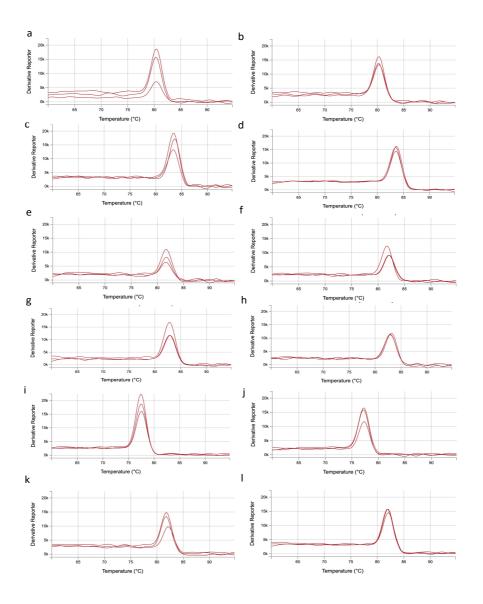


Fig. 4.29 Melt curve plots of DEGs CSS0024393.1 (a and b), CSS0006785.2 (c and d), CSS0016212.1 (e and f), CSS0018684.1 (g and h), CSS0023703.1 (i and j) and CSS0046901.1 (k and l) in control and TMB-infested samples

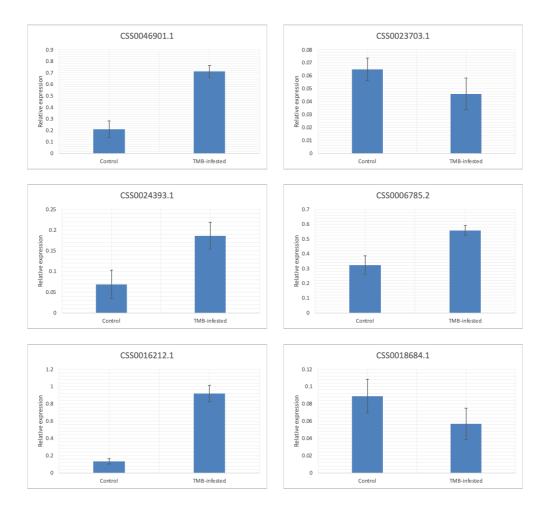


Fig. 4.30 Bar diagrams showing result of qRT-PCR analysis of 6 DEGs in control v/s TMB-infested samples. Values in the y-axis determine the relative expression of DEGs normalized to UBC1 gene. Error bars indicate ±SEM of relative expression of triplicates.

4.5 Comparison between lncRNAs and mRNAs identified in this study

The length distribution and exon numbers of lncRNAs were compared with those of mRNAs to further illustrate the features of candidate lncRNAs of *C. sinensis*. Most of the lncRNAs (62.14%) were found to be < 400 nucleotides in length and only a few of them (4.58%) were longer than 1000 bp. Whereas mRNAs with length > 1000 nucleotides accounted for 60.15% (Fig. 4.31a). The lncRNAs exhibited exon numbers in a range of

2-8 where 83.6% comprised of two exons and only 0.01% had eight exons. In contrast, mRNAs had exon numbers ranging from 1-77 and 16.01% mRNAs have \geq 10 exons (Fig. 4.31b). These findings are consistent with previous reports (Wan *et al.* 2020; Zou *et al.* 2020; He *et al.* 2019; Tian *et al.* 2020) which support the fact that lncRNAs are shorter in length and contain less exon numbers as compared with the mRNAs. Comparison of expression levels of lncRNAs and mRNAs based on their FPKM values in the six libraries is being shown in Fig. 4.31c. The lncRNAs in this study showed lower FPKM values than genes and this is in accordance with previous studies (Tian *et al.* 2021; Zou *et al.* 2020).

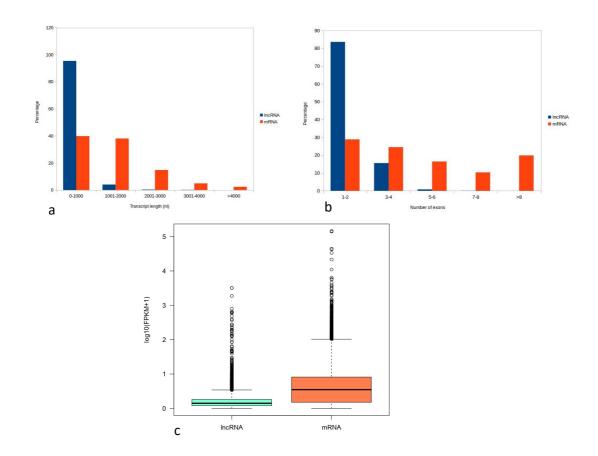


Fig. 4.31 (a) Bar diagram showing distribution of transcript length of both identified lncRNAs and expressed mRNAs (b) Comparison of exon numbers between identified lncRNAs and mRNAs (c) Boxplot showing distribution of FPKM values of lncRNAs and mRNAs

4.6 CircRNAs

4.6.1 Identification and characterization of circRNAs

We obtained an average of 39902058 number of clean reads in the control samples and 45566217 reads in the TMB-infested samples through the high-throughput sequencing. Based on the sequenced reads, the CIRI2 tool predicted 709 circRNAs in total from six RNA-seq libraries. Distribution pattern of circRNAs in the 15 chromosomes of *C. sinensis* genome showed that chromosome 1 contained the highest number of identified circRNAs (66).

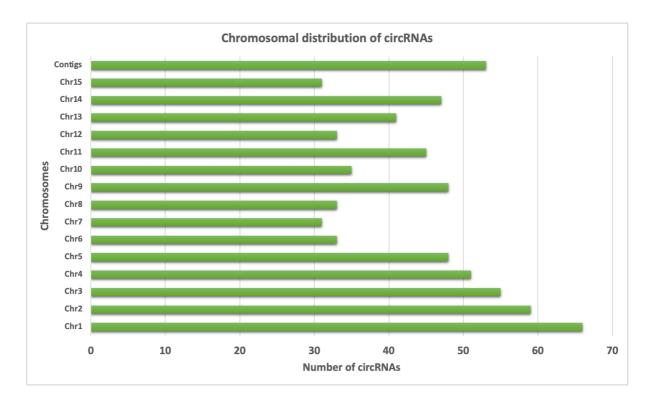


Fig. 4.32 Chromosomal distribution of identified circRNAs

They were classified according to their genomic positions and majority of them (62%) were derived from intergenic regions, followed by exonic (35%) and intronic circRNAs (3%) (Fig. 4.33a). The healthy and TMB infested tissues shared 30.3% of the circRNAs in common, while 209 (29.5%) circRNAs were expressed selectively in TMB infested

tea leaves (Fig. 4.33b). The length of the circRNAs ranged from 138-5000+ nucleotides and the proportion of circRNAs with lengths greater than 5000 bp is the highest (58.11%). The length distribution of circRNAs has been displayed in Fig. 4.33c. We also perfomed a BLASTn search to analyse whether the identified circRNAs are evolutionarily conserved among other plant species. About 60% (425 circRNAs) of the identified circRNAs showed homology with already known plant circRNAs deposited in the PlantcircBase. CircRNAs of this study showed homology with circRNAs of 12 plant species. The highest homology was recorded from previously reported circRNAs of *C. sinensis* found in PlantcircBase, followed by those of Zea mays, Oryza sativa, Gossipium hirsutum, Populus trichocarpa, Solanum lycopersicum (Fig. 4.33d).

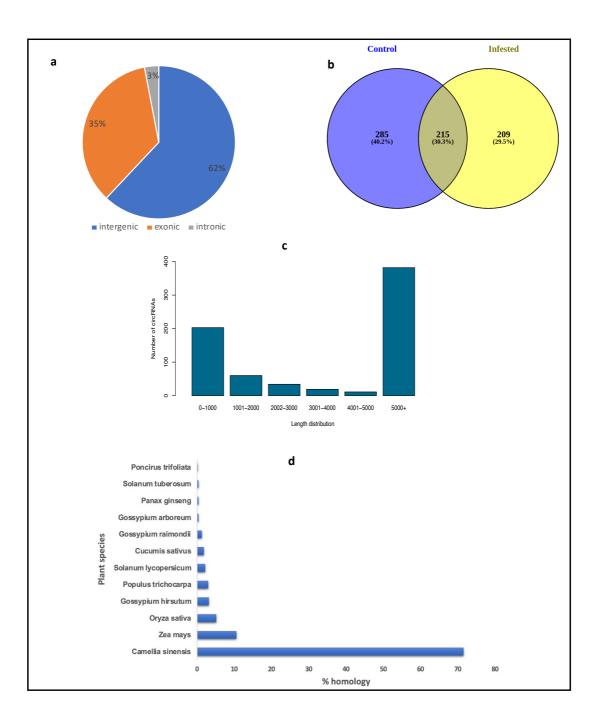


Fig. 4.33 Characterization of identified circRNAs in tea plant. (a) Pie chart showing classification of circRNAs based on their genomic positions (b) Venn diagram showing number of unique and common circRNAs identified in control and TMB-infested samples (c) Bar diagram showing length distribution of identified circRNAs (d) Percentage of circRNAs showing homology with already reported circRNAs of different plant species deposited in PlantcircBase

4.6.2 The differential expression pattern of identified circRNAs

The precise expression of circRNAs infers their probable involvements with specific biological functions. To check whether circRNAs were differentially abundant during control v/s treated condition, we compared the expression patterns of circRNAs in the healthy tea plants (control) v/s TMB-treated group of tea plants. We observed a distinct expression pattern of circRNAs in both the control and treatment group of plants. It was found that out of the 709 identified circRNAs, 34 circRNAs got differentially expressed during TMB treatment on tea plant. This includes 15 up-regulated and 19 down-regulated circRNAs which indicated their possible role in TMB stress on tea plant. Fig. 4.34a and 4.34b represent the differential expression visualization of DECs through heatmap and volcano plot respectively.

circRNA id	Log2 fold change	Adjusted p-value (padj)
Csi-circ4	2.053325	0
Csi-circ120	1.703429	1.85E-272
Csi-circ51	-2.1504	2.52E-235
Csi-circ694	1.393367	3.30E-232
Csi-circ385	-1.5555	1.41E-167
Csi-circ203	2.847199	1.56E-91
Csi-circ391	-1.99755	2.75E-67
Csi-circ245	-3.32441	2.46E-44
Csi-circ180	1.940574	2.52E-35
Csi-circ404	-1.90451	2.14E-31
Csi-circ282	-1.38954	1.58E-30
Csi-circ394	-1.35273	3.93E-29
Csi-circ593	-1.60034	8.38E-19
Csi-circ47	-2.03786	6.07E-17
Csi-circ321	-2.34697	7.15E-13
Csi-circ594	-1.07181	9.32E-12
Csi-circ598	1.064933	1.16E-11
Csi-circ680	3.940519	1.28E-11
Csi-circ330	-1.05856	2.27E-11
Csi-circ243	-3.06236	2.36E-10
Csi-circ150	1.866072	2.93E-10

Table. 4.4 List of DECs with their log2 fold change and p-values

Csi-circ87	1.126929	6.97E-09	
Csi-circ186	-1.47149	3.98E-07	
Csi-circ666	-1.59185	6.36E-06	
Csi-circ428	-2.18795	1.39E-05	
Csi-circ701	-1.80081	2.14E-05	
Csi-circ130	-1.37495	2.20E-05	
Csi-circ357	2.400324	5.50E-05	
Csi-circ331	1.485547	0.000341	
Csi-circ623	-1.01008	0.000769	
Csi-circ389	1.088886	0.004986	
Csi-circ219	1.382156	0.006061	
Csi-circ453	2.004185	0.011813	
Csi-circ458	1.45577	0.03905	

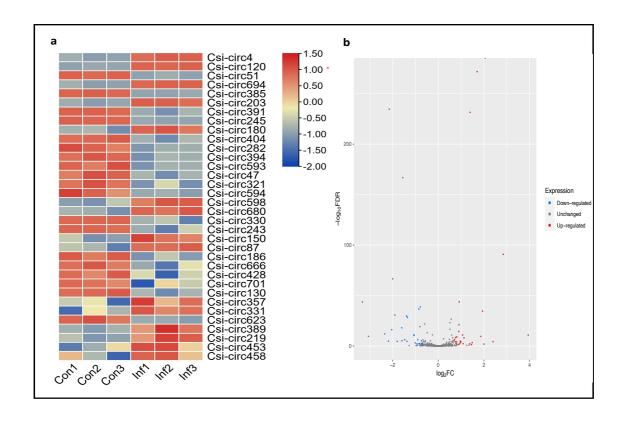


Fig. 4.34 Differential expression pattern of identified circRNAs. (a) A heatmap showing the expression pattern of DECs across all six samples (b) Volcano plot showing differential expression of circRNAs

4.6.3 Functional characterization of DECs

To establish the relationship of the identified circRNAs with protein coding genes of *C*. *sinensis* and to explore the biological processes in which the circRNAs are involved, we performed a circRNA-mRNA co-expression analysis. We applied a stringent cut-off of 0.9 for PCC (Bordoloi *et al.* 2021) to find out only highly co-expressing circRNA-mRNA pairs. We identified 3387 genes to be correlated with the expression pattern of the DECs. Functional characterization of the DEC parental genes and correlated genes revealed that the DEC-target genes were annotated under 407 GO terms, of which 322 were under "Biological Processes", 37 under "Cellular Component" and 48 GO terms were found to be under "Molecular function". The distribution of DEC-target genes under GO terms has been depicted in Fig. 4.35.

Parental gene id	Derived from	Parental gene
		information
CSS0045875	exon	Alpha-terpineol synthase
		like
CSS0042855	exon	Shikimate dehydrogenase
CSS0007547	intron	U2 splicing factor large
		subunit
CSS0044326	exon	cdc protein
CSS0006029	exon	shikimate O-
		hydroxycinnamoyl
CSS0016268	exon	uncharacterized
CSS0027271	exon	Protein phosphatase
	CSS0045875 CSS0042855 CSS0042855 CSS0007547 CSS0044326 CSS0006029 CSS0016268	CSS0045875 exon CSS0042855 exon CSS0042855 exon CSS007547 intron CSS004326 exon CSS0006029 exon CSS0016268 exon

Table. 4.5 List of DECs annotated with their parental genes

Csi-circ186	CSS0002159	intron	HEN4-like
Csi-circ666	CSS0041035	exon	uncharacterized
Csi-circ701	CSS0017612	exon	ser/thr protein phosphatase
Csi-circ357	CSS0000146	intron	F-box/WD40 repeat
			containing protein

Based on GSEA of KEGG pathway, it was found that the upregulated DEC-target genes are enriched in KEGG pathways such as "diterpenoid biosynthesis", "nucleocytoplasmic transport", "tryptophan metabolism", "ascorbate and aldarate metabolism", "biosynthesis of secondary metabolites" and "biosynthesis of cofactors". Whereas downregulated DEC-target genes are enriched in "N-glycan biosynthesis" and "porphyrin metabolism" pathways. Fig. 4.36 depicts the KEGG annotation result output.

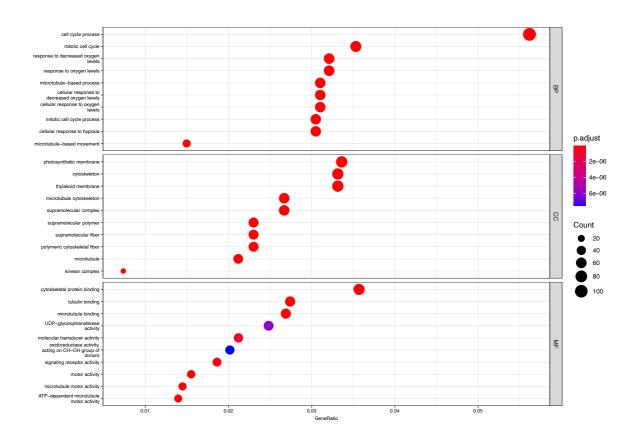


Fig. 4.35 Annotation of the DEC-target genes based on GO. The x-axis depicts the enrichment ratio between number of DEC-target genes and all UniGenes enriched in a particular GO term. The size of the bubble represents number of DEC-target genes assigned to the particular GO term and the color of the bubble represents adjusted p-value (q value). BP; Biological processes, CC; Cellular component, MF; Molecular function

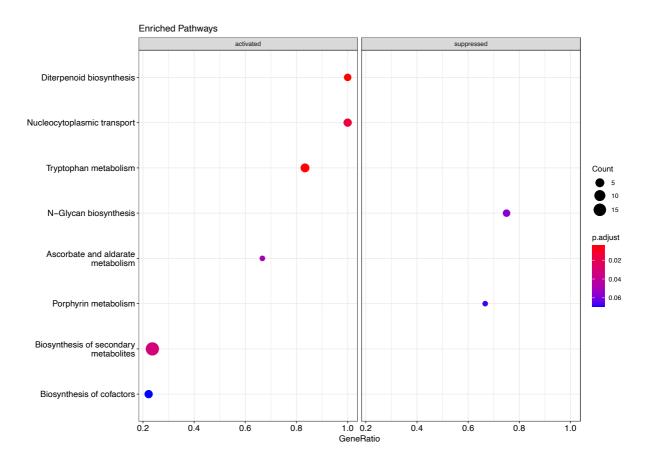


Fig. 4.36 GSEA based on KEGG pathway of DEC-target genes. The x-axis depicts the enrichment ratio between number of lncRNA-target genes and all UniGenes enriched in a particular KEGG pathway. The size of the bubble represents number of DEC-target genes assigned to the particular KEGG pathway and the color of the bubble represents adjusted p-value (q value). The left halve of the figure represents pathways upregulated in response to TMB and the right halve represents pathways downregulated in response to TMB.

4.7 miRNA targets, eTMs

LncRNAs can serve as potential miRNA targets to impart significant influence on miRNA active level. Therefore, it is necessary to assess the possibility of TMB-responsive lncRNAs that can effectively act as targets of conserved as well as novel *C*. *sinensis* miRNAs. A total of 28 DELs were identified to be potential targets of 46 *C*. *sinensis* miRNAs. Most of the miRNAs targeting the lncRNAs were novel to *C*. *sinensis*. A high frequency of miRNAs were seen to target five to twelve lncRNAs. Notably, conserved miRNAs like miR156, miR171 and miR395 were predicted to target 6 lncRNAs. These miRNAs are well-known to participate in plant-insect interaction (Stief *et al.* 2014; Wang *et al.* 2018) and hence, the lncRNAs targeted by these miRNAs might be potential candidates for regulation of gene expression during TMB stress in *C*. *sinensis*. TCONS_00099260 was targeted by as many as 12 miRNAs including the conserved miR171 and TCONS_00063108 is a potential target for 8 miRNAs novel to *C*. *sinensis*. Additionally, 7 lncRNAs were found to act as eTMs.

Table 4.6 Table showing lncRNAs acting as eTMs and the corresponding mRNAs with their available information

miRNA	eTM	mRNA	mRNA information
Csn-miR1310	TCONS_00028490	-	-
Csn-miR171	TCONS_00087056	CSS0048675	SCARECROW like
			protein
		CSS0048959	UDP-
			glycosyltransferase like
		CSS0045390	UDP-
			glycosyltransferase like

		CSS0043196	Replication protein
		CSS0005439	Glycine dehydrogenase
		CSS0037920	Glycine dehydrogenase
		CSS0045428	Polymerase IV like
		CSS0032383	Polymerase IV like
		CSS0016814	UDP-
			glycosyltransferase like
		CSS0036502	6,7-dimethyl-8-
			ribityllumazine synthase
Csn-miR2936	TCONS_00129063	-	-
Csn-miR5558	TCONS_00034064	-	-
Csn-miR6173	TCONS_00128571	-	-
Csn-miRn2	TCONS_00088006	CSS0028211	Dirigent protein like
	TCONS_00088007	CSS0044221	Dirigent protein like
		CSS0025659	TMV resistance protein
			like

miRNA	Target	E-value	miRNA	miRNA	Target_start	Target_end	miRNA_aligned_fragment	Target_aligned_fragment	Inhibition
			_start	_end					
csn-miRn212	TCONS_0009	1.5	1	24	204	227	UUGGAAAAGGAAAGG	ACACCUUUUCCUUUC	Cleavage
	9260						GAAAAUGUC	UUUUUUCAA	
csn-miRn301	TCONS_0009	2	1	24	205	228	UUUGGAAAUAGAAAG	CACCUUUUCCUUUCU	Cleavage
	9260						GAAAAAGAU	UUUUUCAAA	
csn-miRn82	TCONS_0009	2	1	24	205	228	UUUGGAAAGAGAAAA	CACCUUUUCCUUUCU	Cleavage
	9260						GAAAAAGAC	UUUUUCAAA	
csn-miR4403	TCONS_0011	2.5	1	24	2047	2070	ACGGACACCGGACACG	GUCCGUGUCAUGUC	Translation
	8970						ACACGGAC	AGGUGUCCGU	
csn-miRn144	TCONS_0003	2.5	1	24	457	480	GAAUGGAUUUAAAAA	UGCAGUUUCAUUUU	Cleavage
	0552						GAAAAAGGA	AAAUCUGUUU	
csn-miRn144	TCONS_0003	2.5	1	24	444	467	GAAUGGAUUUAAAAA	UGCAGUUUCAUUUU	Cleavage
	0553						GAAAAAGGA	AAAUCUGUUU	
csn-miRn154	TCONS_0009	2.5	1	24	205	228	UUUGAAAAGGGAAAU	CACCUUUUCCUUUCU	Cleavage
	9260						GGAAAACAU	UUUUUCAAA	
csn-miRn231	TCONS_0002	2.5	1	23	1702	1724	UGCAUCUAUAGCUGUG	UUGUGUUUAAAGCU	Cleavage
	2462						AACAAUU	AUGGAUGUA	
csn-miRn37-3p	TCONS_0002	2.5	1	23	1702	1724	UGCAUCUAUAGCUGUG	UUGUGUUUAAAGCU	Cleavage
	2462						AACAAUU	AUGGAUGUA	
csn-miRn431	TCONS_0011	2.5	1	24	312	335	AACCACACAAUGUAGU	UUUGAUGUACUAAA	Cleavage
	4397						ACUCUAGG	UUGUGUGGUU	

Table 4.7 Table showing C. sinensis miRNAs targeting DELs

csn-miRn51	TCONS_0009	2.5	1	24	210	233	AGUGAUUUGGAAAAC	υυυςςυυυςυυυυυ	Cleavage
	9260						GAAAGAGAA	UCAAAUUAUU	
csn-miRn52-3p	TCONS_0009	2.5	1	21	37	57	CGUUGGAAGUCUUUG	GCCCCUCAGAGACUU	Cleavage
	6802						AGGGUA	UCAAUC	
csn-miRn58-5p	TCONS_0009	2.5	1	21	232	252	UUGGCUCAUGGAUUU	UUUUCCAAAUCCAU	Cleavage
	9260						GGGGAG	GAACCAA	
csn-miR395h	TCONS_0009	3	1	21	240	260	GUUCCUCUGAACACUU	UGAAGAAGUGUUUG	Cleavage
	6174						CAUUG	GAGGAAA	
csn-miRn164	TCONS_0011	3	1	24	471	494	UUUCGUAACUCAAAUU	AAAGAGAAAAUUUG	Cleavage
	5148						UUGUGGCU	AUUUGCGAAA	
csn-miRn212	TCONS_0006	3	1	24	102	125	UUGGAAAAGGAAAGG	GACAAUUUUCUUUU	Cleavage
	3108						GAAAAUGUC	CUUUUUUUAG	
csn-miRn239	TCONS_0009	3	1	24	207	229	AUUUGGAAAAGGAAA	CCUUUUCC-	Cleavage
	9260						UGGAAAAGC	UUUCUUUUUUCAAA	
csn-miRn278	TCONS_0009	3	1	24	114	137	AGAAAUUUCGUCAAAC	GUUUAUGGAUUUGA	Cleavage
	9260						UCAGAGAA	UGAGAUUUUU	
csn-miRn311	TCONS_0011	3	1	24	404	427	AACUAGAAACACGAGA	UUUUUUGUUCUGGU	Translation
	4397						ACAAUCGC	UUUUCUAGUU	
csn-miRn335	TCONS_0009	3	1	24	419	442	GAAAGGAAAAUGAAA	υυυυυυυυυυυυ	Translation
	6174						AAAGUAGGU	UUUUCUUUUC	
csn-miRn421	TCONS_0006	3	1	24	102	125	UUUAGAAAGGAAAAG	GACAAUUUUCUUUU	Cleavage
	3108						AAAAAAGAU	CUUUUUUUAG	
csn-miRn57	TCONS_0011	3	1	24	394	417	AGAGAUUUGGAAAAG	UAAAAUUUUUUUUU	Cleavage
	5148						GAAAUGAAA	UCUAAUCUCU	

csn-miRn82	TCONS_0006	3	1	24	103	126	UUUGGAAAGAGAAAA	ACAAUUUUCUUUUC	Cleavage
	3108						GAAAAAGAC	UUUUUUUAGU	
csn-miR156c-	TCONS_0008	3.5	1	22	215	236	GCUCACUUCUCUUUCU	AGAGAAAGGGAGAG	Cleavage
3р	3891						GUCAUU	AAAUGAGC	
	TCONS_0005	3.5	1	21	226	246	UGACAGAAGAGAGAG	AUAGCUCUCUCUCUU	Cleavage
	3665						AGCACA	CUCUCU	
csn-miR156h	TCONS_0005	3.5	1	21	226	246	UGACAGAAGAGAGAG	AUAGCUCUCUCUUU	Cleavage
	3665						AGCACA	CUCUCU	
csn-miR166b-	TCONS_0004	3.5	1	21	1001	1021	GAAUGUCGUCUGGUUC	UUUUCUAUCCAGAU	Cleavage
5p	0585						GAAAU	GAUAUUU	
csn-miR171q	TCONS_0009	3.5	1	24	823	846	UUGAUUUGAUUGAGC	GGUUAGGCAGCCCA	Cleavage
	9260						CGCGCCAAU	AUCAAAUCAA	
csn-miR395h	TCONS_0010	3.5	1	21	31	51	GUUCCUCUGAACACUU	GAAUCAAAUGUUUG	Cleavage
	8694						CAUUG	GAGGGAC	
csn-miR828	TCONS_0000	3.5	1	22	459	480	UCUUGCUCAAAUGAGU	CCGAUUUUUUAUUU	Cleavage
	1085						AUUCCA	GAGUAAGA	
csn-miR828a	TCONS_0000	3.5	1	22	459	480	UCUUGCUCAAAUGAGU	CCGAUUUUUUAUUU	Cleavage
	1085						AUUCCA	GAGUAAGA	
csn-miRn120	TCONS_0003	3.5	1	24	866	889	GUAAAGUACAUGGACC	GAACAUUUGGGUGA	Cleavage
	8780						AAAUUGAC	UGUACUUUGC	
csn-miRn125	TCONS_0003	3.5	1	24	267	290	AAUGAGAUUUUGACU	AUGGAUAUUGGUUA	Cleavage
	2354						GAUAGAAGU	GAGUUUUAUU	
csn-miRn13	TCONS_0002	3.5	1	24	1715	1738	CAUCUAUGAAUCGGUA	UAUGGAUGUAUCUA	Cleavage
	2462						CAUUUGAC	UACAUAGAUG	

csn-miRn171	TCONS_0006	3.5	1	24	165	188	AUUUCGUCCAAUUAUU	CAAGAGUUGUUGAU	Cleavage
	2765						AACAGAAU	UGGACGAAGG	
csn-miRn192-	TCONS_0011	3.5	1	24	310	334	ACCACACAAUGUAGUA	CAUUUGAUGUACUA	Translation
3P	4397						C-UCGAGGA	AAUUGUGUGGU	
csn-miRn212	TCONS_0000	3.5	1	24	319	342	UUGGAAAAGGAAAGG	UUGUUUUUACUUUU	Cleavage
	1085						GAAAAUGUC	UCUUUUUUAG	
csn-miRn260	TCONS_0011	3.5	1	21	317	337	UCAAGCACACAAUGUA	UGUACUAAAUUGUG	Cleavage
	4397						GUACU	UGGUUGU	
csn-miRn292	TCONS_0011	3.5	1	24	403	426	ACUAGAAGAACCAAAU	AUUUUUUGUUCUGG	Cleavage
	4397						UGACACAU	UUUUUCUAGU	
csn-miRn32-3p	TCONS_0011	3.5	1	24	310	334	ACCACACAAUGUAGUA	CAUUUGAUGUACUA	Translation
	4397						C-UCGAGGA	AAUUGUGUGGU	
csn-miRn33	TCONS_0010	3.5	1	24	213	236	AGCACCUGUCAACAAU	CUUUCACAGUUGUU	Cleavage
	6979						UUCUUACC	GGCAGGUGUU	
csn-miRn340	TCONS_0002	3.5	1	24	2361	2384	AAAUGACAAUUUUAC	GAUGGAUGGGUAAG	Cleavage
	2462						UCCUUUCGA	AUUGUCAAUU	
csn-miRn358	TCONS_0001	3.5	1	24	1272	1295	AGGAAACUUUAGGGA	UAUUUUUUUUUUUUUUUUU	Cleavage
	7587						AAAAUCACU	AGGGUUUCCU	
csn-miRn377	TCONS_0007	3.5	1	24	59	82	AUUUGAUGAGAGAUU	CUAUCUCCGAAUUUC	Cleavage
	7127						UGGAAAUGA	UCUUUGAAU	
csn-miRn377	TCONS_0012	3.5	1	24	1510	1533	AUUUGAUGAGAGAUU	AUCUGUUCAAAUUU	Cleavage
	4553						UGGAAAUGA	UUUAUCAUAU	
csn-miRn383	TCONS_0002	3.5	1	24	102	125	AUUUGAGAAAUUACA	GGGUGUAUUUGUAA	Cleavage
	4800						GAUACUCCC	UUUAUCAAUU	

csn-miRn402	TCONS_0007	3.5	1	24	202	224	AAUAAAUCUCAACCAU	ACCUCUGUAUGGU-	Translation
	2135						ACACUGUA	GAGAUUUGUU	
csn-miRn41	TCONS_0011	3.5	1	21	317	337	UCAAGCACACAAUGUA	UGUACUAAAUUGUG	Cleavage
	4397						GUACU	UGGUUGU	
csn-miRn421	TCONS_0011	3.5	1	24	229	252	UUUAGAAAGGAAAAG	UUCUUUUUUUUUUUUUU	Cleavage
	4397						AAAAAAGAU	UUUUUCUGAA	
csn-miRn421	TCONS_0002	3.5	1	24	524	547	UUUAGAAAGGAAAAG	GGUUUUUUUUUUUUU	Cleavage
	1732						AAAAAAGAU	UUUUUUUAGU	
csn-miRn424	TCONS_0001	3.5	1	24	1272	1295	AGGAAACUUUAGAGA	UAUUUUUUUUUUUUUUUUU	Cleavage
	7587						AAAAUCACU	AGGGUUUCCU	
csn-miRn428	TCONS_0009	3.5	1	24	504	527	AAUUGGUUAUACUAG	CUCUGGUUUUUUGU	Cleavage
	6802						GAAUUAGUG	AUGACCAAUU	
csn-miRn446	TCONS_0002	3.5	1	24	1540	1563	AGAAGAGAAUGUAUU	UCCUCCUUAAAUAU	Cleavage
	5347						UGAAACAAA	GUUUUCUUUU	
csn-miRn446	TCONS_0002	3.5	1	24	1492	1515	AGAAGAGAAUGUAUU	UCCUCCUUAAAUAU	Cleavage
	4234						UGAAACAAA	GUUUUCUUUU	
csn-miRn478	TCONS_0011	3.5	1	24	624	647	AAAGGUGAGGCUUGA	UGAUACUCUUCAAG	Cleavage
	8970						GGUCCUACU	CCUUGCCUUU	
csn-miRn57	TCONS_0009	3.5	1	24	210	233	AGAGAUUUGGAAAAG	UUUCCUUUCUUUUU	Cleavage
	9260						GAAAUGAAA	UCAAAUUAUU	
csn-miRn58	TCONS_0003	3.5	1	24	1194	1217	AUGGACCAAAUUGACA	UCUUUAUCUUUUGG	Cleavage
	4064						CAUCAUGU	UUUGGUCCAU	
sn-miRn7	TCONS_0009	3.5	1	24	102	125	AAAUUCUUGAACCAAA	CCAUGGUGUUUGGU	Cleavage
	9260						UGCAGCCU	UUAUGGAUUU	

csn-miRn90-3P	TCONS_0011	3.5	1	24	386	409	AAAAAAUCCUAUUAU	ACGCUCAUCAAAAU	Cleavage
	4397						GACUCCUCG	GGGAUUUUUU	
csn-miRn99	TCONS_0009	3.5	1	24	1424	1447	AUAAAUGUGAGUCGA	AACCAUUUGUUAAU	Cleavage
	9260						UGAAAGGGU	UCACAUUUAU	
csn-miR156c	TCONS_0003	4	1	21	544	564	UUGACAGAAGAAAGA	UUGGACUAUUUUUU	Cleavage
	2903						GAGCAC	UUGUCAA	
csn-miR156e	TCONS_0003	4	1	21	544	564	UUGACAGAAGAAAGA	UUGGACUAUUUUUU	Cleavage
	2903						GAGCAC	UUGUCAA	
csn-miR156f	TCONS_0011	4	1	22	193	214	UGCUCACUUCUCUUCU	AAUGAAACAACAGA	Cleavage
	6642						GUCAGC	GGUGAGCA	
csn-miR166a-	TCONS_0004	4	1	21	1002	1022	GGAAUGUCGUCUGGU	UUUCUAUCCAGAUG	Cleavage
5p	0585						UCGAAA	AUAUUUU	
csn-miR166d	TCONS_0004	4	1	21	1002	1022	AGAAUGUUGUCUGGC	UUUCUAUCCAGAUG	Cleavage
	0585						UCGAGG	AUAUUUU	
csn-miR166e	TCONS_0004	4	1	21	1002	1022	GGAAUGUUAUCUGGC	UUUCUAUCCAGAUG	Cleavage
	0585						UCGAGG	AUAUUUU	
csn-miR166k	TCONS_0004	4	1	21	1002	1022	GGAAUGUCGUCUGGU	UUUCUAUCCAGAUG	Cleavage
	0585						UCGAAA	AUAUUUU	
csn-miR5368e	TCONS_0009	4	1	20	439	458	AGAUACCACUCUGGAA	UUUCUUUUAGGGUU	Cleavage
	6174						GAGC	GUAUUU	
csn-miR6300b	TCONS_0006	4	1	21	394	414	GUUGUAGUAUAGUGG	CACUGAUUAUUAUA	Cleavage
	2765						UGAGUA	UUAUAAU	
esn-miRn107	TCONS_0008	4	1	24	1119	1142	AUUCAGUAGAAAAUU	CAGGUGAGGAAUUU	Cleavage
	7056						UGGUAUCCC	UUUAUUGAAU	

csn-miRn107	TCONS_0003	4	1	24	253	276	AUUCAGUAGAAAAUU	AUAUUAUCGUGUUU	Cleavage
	8780						UGGUAUCCC	UUUAUUGAGU	
csn-miRn132-	TCONS_0002	4	1	24	211	234	UAACCUGAGAACCAAC	AGUACAAUGUUGGU	Cleavage
3P	4800						AUUGCGAG	UCUUGAUUUA	
csn-miRn144	TCONS_0007	4	1	24	413	436	GAAUGGAUUUAAAAA	AUGAUUUUUUUUUU	Cleavage
	8068						GAAAAAGGA	AAUUCCUUUU	
csn-miRn146	TCONS_0002	4	1	24	969	992	AAGAGAUUUAGAAAA	ACUUUUUUUUUUUUU	Cleavage
	5347						GAAAAAGAA	UAAAUUUUUA	
csn-miRn146	TCONS_0002	4	1	24	921	944	AAGAGAUUUAGAAAA	ACUUUUUUUUUUUUU	Cleavage
	4234						GAAAAAGAA	UAAAUUUUUA	
csn-miRn146	TCONS_0001	4	1	24	367	390	AAGAGAUUUAGAAAA	UGUUCUUUUUUUAC	Cleavage
	7587						GAAAAAGAA	UAAAUUUUUC	
csn-miRn154	TCONS_0006	4	1	24	288	311	UUUGAAAAGGGAAAU	ACCUUCUUCAUUUCU	Cleavage
	9554						GGAAAACAU	CUUUUUUAA	
csn-miRn162	TCONS_0007	4	1	24	411	434	GAGGAUUUGAAAAGA	AUAUGAUUUUUUUU	Cleavage
	8068						AAUUUGAAA	UUAAUUCCUU	
csn-miRn17	TCONS_0011	4	1	21	1458	1478	GUGCUGUCUAUCGUCG	CUUGACGGAGAUAG	Cleavage
	8970						UCAUG	AUAGUAG	
csn-miRn172	TCONS_0011	4	1	24	238	261	AGUGAAAGAAAAAAG	UUCACAGGCCUUUU	Cleavage
	5148						GUAUGUGAA	UUUUUUUAAU	
csn-miRn172	TCONS_0005	4	1	24	247	270	AGUGAAAGAAAAAAG	CUUCCAUUUCCUUUU	Cleavage
	3665						GUAUGUGAA	UGUUUCACU	
csn-miRn192-	TCONS_0011	4	1	21	544	564	UUUCUAGAGUACUACA	UUCCAUUUAUUACU	Cleavage
5P	8970						UUGUG	UUAGAAA	

csn-miRn203	TCONS_0011	4	1	24	536	559	UAAUCGGAAUACAUU	UGUUUUGAAACUGU	Cleavage
	5148						UUUGUCAAU	AUGCUGAUUA	
csn-miRn205-	TCONS_0009	4	1	25	440	464	UGGCUCAAAUGUGGCU	UUCUUUUAGGGUUG	Cleavage
5P	6174						CAAAUGGCU	UAUUUGAGUCA	
csn-miRn207	TCONS_0003	4	1	24	852	875	AUAAAUUUUAACCAG	CUUUAGCUAUUGGU	Cleavage
	4064						UAGCAUAAC	UGAAAAUUGA	
csn-miRn212	TCONS_0011	4	1	24	736	759	UUGGAAAAGGAAAGG	CUUUACUUUUUUUU	Cleavage
	5148						GAAAAUGUC	UUUUUUUCAA	
csn-miRn212	TCONS_0002	4	1	24	523	546	UUGGAAAAGGAAAGG	UGGUUUUUUUUUUUU	Cleavage
	1732						GAAAAUGUC	UUUUUUUUAG	
csn-miRn214	TCONS_0008	4	1	24	8	31	ACCCGAGUGAGACAUU	GGGGCUAAAAAGUC	Cleavage
	7056						UGAUCAUU	UCAUUUGGGA	
csn-miRn219	TCONS_0003	4	1	24	233	256	ACAAUUGGACGGAAU	GAAAAAUAUGAUUU	Cleavage
	2903						GUGUUGAUG	GUCUAAUUGU	
csn-miRn221	TCONS_0006	4	1	24	647	670	AAAUUUAUGAUCAUU	GAUUUAUAUAUUGA	Cleavage
	8537						GGAUUACCU	UUAUAGGUUU	
csn-miRn222	TCONS_0001	4	1	24	1165	1188	AUCCGAUAGACAUGAU	UAAGUAGAAGCAUG	Cleavage
	7587						UUUUUACA	UUUGUGGGAU	
csn-miRn239	TCONS_0011	4	1	24	94	117	AUUUGGAAAAGGAAA	CCCAGUUCAUUUUCU	Cleavage
	5148						UGGAAAAGC	UUUACAAUU	
csn-miRn241	TCONS_0009	4	1	24	271	294	AUUGAUCGGAUAUCG	GAUGUCUAUAGAUA	Cleavage
	9260						AUAGUAACU	UCUAAUCAAA	
csn-miRn261	TCONS_0003	4	1	24	1031	1054	GAAACGGAAAAGAUG	UGUUGAGUACAUUU	Cleavage
	2354						UGUGAAACU	UUUCCUUUUC	

csn-miRn268	TCONS_0002	4	1	24	969	992	GAGGAAUUUGAAAAG	ACUUUUUUUUUUUUU	Cleavage
	5347						GAAAAGUGA	UAAAUUUUUA	
csn-miRn268	TCONS_0002	4	1	24	921	944	GAGGAAUUUGAAAAG	ACUUUUUUUUUUUUU	Cleavage
	4234						GAAAAGUGA	UAAAUUUUUA	
csn-miRn268	TCONS_0011	4	1	24	98	121	GAGGAAUUUGAAAAG	GUUCAUUUUCUUUU	Translation
	5148						GAAAAGUGA	ACAAUUCUUC	
csn-miRn27	TCONS_0007	4	1	24	443	466	ACUGUUUUGAGCCAUU	CUUCUCACAGUCGUU	Cleavage
	8068						GUGACCAC	CAAAAAGU	
csn-miRn27	TCONS_0008	4	1	24	150	173	ACUGUUUUGAGCCAUU	ACAUAUGCAUUGGC	Cleavage
	8006						GUGACCAC	UUGAAGUAGU	
csn-miRn278	TCONS_0012	4	1	24	1014	1037	AGAAAUUUCGUCAAAC	GACAAUUAAUAUGA	Cleavage
	4553						UCAGAGAA	UGAAAUUUUU	
csn-miRn290	TCONS_0009	4	1	24	287	310	AUGUGUAAAAAGUGU	UAAUCAAAUUAAUU	Cleavage
	9260						AUUAAAAUA	UUUUACAUAU	
csn-miRn292	TCONS_0011	4	1	24	1045	1068	ACUAGAAGAACCAAAU	UAAAGUAGAUUUGG	Cleavage
	8970						UGACACAU	UUUUUUUAAU	
csn-miRn294	TCONS_0010	4	1	24	115	138	UUGAGCCAUUGUAGCC	AGAACUUUGGCUUC	Cleavage
	4371						ACAAAAAU	AAUGGAUCAA	
csn-miRn30	TCONS_0011	4	1	24	114	137	AGUGGAUGAAAGGAU	UUGUUGUUUGCUCU	Cleavage
	6642						AAACGAUAU	UUCAUUCCCU	
csn-miRn301	TCONS_0002	4	1	24	384	407	UUUGGAAAUAGAAAG	GUUUUUUUUUUUUU	Cleavage
	1732						GAAAAAGAU	UGUUUUUAAU	
csn-miRn301	TCONS_0009	4	1	24	546	569	UUUGGAAAUAGAAAG	UGUAAUUUUAUUUU	Cleavage
	6174			1			GAAAAAGAU	UAUUUCUUAA	

csn-miRn307	TCONS_0004	4	1	24	1032	1055	GUUAUUGGAUGGGGA	GUAACUAUAUGCUC	Cleavage
	0585						UACCACGUG	AUCCAAUAAU	
csn-miRn31	TCONS_0013	4	1	24	217	240	ACUUUUAGUAGAAUU	CACUUCAUCAAUUCU	Cleavage
	2530						UUUGGGGCC	AAUAAAGGU	
csn-miRn315	TCONS_0004	4	1	24	227	250	GAAAGAAUUAUGAUC	CUUCUUAAUGAUUU	Translation
	0585						AUUGGAUUA	UGAUUUUUUU	
csn-miRn32-5p	TCONS_0011	4	1	21	544	564	UUUCUAGAGUACUACA	UUCCAUUUAUUACU	Cleavage
	8970						UUGUG	UUAGAAA	
csn-miRn322	TCONS_0007	4	1	24	202	224	GAUAAAUCUCAACCAU	ACCUCUGUAUGGU-	Translation
	2135						ACACUGUA	GAGAUUUGUU	
csn-miRn328	TCONS_0007	4	1	24	202	224	AGUAAAUCUCAACCAU	ACCUCUGUAUGGU-	Translation
	2135						ACACUGUA	GAGAUUUGUU	
csn-miRn331	TCONS_0008	4	1	24	290	313	AUGAUCAUGAAAGAU	CAUGAAUGGAUCUU	Cleavage
	8007						UUGUAACCU	UCAUGUUCAA	
csn-miRn340	TCONS_0009	4	1	24	530	553	AAAUGACAAUUUUAC	CUUAGUUGGGUAAA	Cleavage
	6174						UCCUUUCGA	AUUGUAAUUU	
csn-miRn346	TCONS_0002	4	1	24	358	381	AAGUUGAUCGGCUAUC	GUUGAAUUGAUGGU	Translation
	2462						AAUAACCU	GGAUCAAAUU	
csn-miRn358	TCONS_0001	4	1	24	368	391	AGGAAACUUUAGGGA	GUUCUUUUUUUACU	Cleavage
	7587						AAAAUCACU	AAAUUUUUUCU	
csn-miRn392	TCONS_0009	4	1	24	546	569	UUUAGAAAGAGAAAU	UGUAAUUUUAUUUU	Cleavage
	6174						AGAAAAGGU	UAUUUCUUAA	
csn-miRn397	TCONS_0007	4	1	24	62	85	AGGAUUUGAGGAGAG	UCUCCGAAUUUCUCU	Cleavage
	7127						AUUUAGAAA	UUGAAUCUG	

csn-miRn397	TCONS_0009	4	1	24	308	331	AGGAUUUGAGGAGAG	UAUGUAUUUUUUUU	Cleavage
	9260						AUUUAGAAA	UUCGAGUCCU	
csn-miRn411	TCONS_0011	4	1	23	396	418	AAGAGAUUUGGAAAG	AAAUUUUUUUUUUUU	Cleavage
	5148						GAAAACGG	UAAUCUCUC	
csn-miRn416	TCONS_0003	4	1	24	1302	1325	AAGAGUUAUGAUCAU	UCUAAUUUGAACAU	Cleavage
	4064						UGGAUUACC	CAUAACUCUU	
csn-miRn421	TCONS_0002	4	1	24	384	407	UUUAGAAAGGAAAAG	GUUUUUUUUUUUUU	Cleavage
	1732						AAAAAAGAU	UGUUUUUAAU	
csn-miRn421	TCONS_0000	4	1	24	319	342	UUUAGAAAGGAAAAG	UUGUUUUUACUUUU	Cleavage
	1085						AAAAAAGAU	UCUUUUUUAG	
csn-miRn424	TCONS_0001	4	1	24	368	391	AGGAAACUUUAGAGA	GUUCUUUUUUUACU	Cleavage
	7587						AAAAUCACU	AAAUUUUUUUU	
csn-miRn43	TCONS_0009	4	1	24	1001	1024	AGUUGAUCGGAUAUC	CGCCUUAUGGAUGU	Cleavage
	9260						AAUAGACCU	CCGAAUGACU	
csn-miRn433	TCONS_0008	4	1	24	441	464	AACAAAUGUGAGAUC	GUGGAUUGAAAUGU	Cleavage
	8007						UUGGACCCA	CACAUUUGUU	
csn-miRn433	TCONS_0001	4	1	24	670	693	AACAAAUGUGAGAUC	CUUUUUCAUGAUUU	Cleavage
	5431						UUGGACCCA	UACAUUUUUU	
csn-miRn441	TCONS_0002	4	1	24	871	894	AGAGAAUGAGACAAA	CCUAUGUUACUUGU	Cleavage
	4800						UGAUUUAUA	UUUAUUUUUU	
csn-miRn45	TCONS_0004	4	1	24	1642	1665	AUGUAACUUGCCAAUA	CCUCAAUUUCUUGGC	Cleavage
	0585						AAUCUCAA	UAGAUACAU	
csn-miRn461	TCONS_0011	4	1	24	39	62	GUUUUGUGACCCUUGA	GUACAAAAUUAGGG	Cleavage
	8970						AUUACACU	GUGGCAAAAC	

csn-miRn465-	TCONS_0006	4	1	24	1545	1568	UUGAGAUUCAUUUGU	AUUGAUGCAAGAAA	Cleavage
3P	8537						GGCAUGGUC	UGAAUUUGAA	
csn-miRn469	TCONS_0011	4	1	24	310	333	CCACACAAUGUAGUAC	CAUUUGAUGUACUA	Translation
	4397						UCUAGGAA	AAUUGUGUGG	
csn-miRn47	TCONS_0012	4	1	23	844	866	AAGAUUUGGAAAGGG	AUUUAAUUUCAUUU	Cleavage
	4553						AAAUGAAA	UCAAAUUUU	
csn-miRn48	TCONS_0007	4	1	24	202	224	AGUAAAUCUCAACCAU	ACCUCUGUAUGGU-	Translation
	2135						ACACUGUA	GAGAUUUGUU	
csn-miRn49	TCONS_0002	4	1	21	875	895	CAGAGAGUGAAACAG	UGUUACUUGUUUUA	Cleavage
	4800						AUGAUC	UUUUUUG	
csn-miRn64	TCONS_0002	4	1	24	257	280	ACGAGCAAUGUUUUA	AUAAUGCAACAAGA	Cleavage
	5819						UAGAAGAUC	CAUUGCUUGU	
csn-miRn68	TCONS_0011	4	1	21	1458	1478	GUGCUGUCUAUCGUCG	CUUGACGGAGAUAG	Cleavage
	8970						UCAUG	AUAGUAG	
csn-miRn75	TCONS_0014	4	1	24	513	536	AAACAAGUUACAAUU	AUGGUGGGCGAUUG	Cleavage
	3159						GUCGGACCC	UAAUUUUUUU	
csn-miRn76	TCONS_0006	4	1	24	1193	1216	AAAUAUUAUAAUUAU	AAUUAAUUGGUGAU	Cleavage
	8537						UAGAUCGAA	UGUAAUGUUU	
csn-miRn82	TCONS_0011	4	1	24	229	252	UUUGGAAAGAGAAAA	UUCUUUUUUUUUUUUUU	Cleavage
	4397						GAAAAAGAC	UUUUUCUGAA	
csn-miRn82	TCONS_0011	4	1	24	742	765	UUUGGAAAGAGAAAA	บบบบบบบบบบบบบบบบบบบบบบบบบบบบบบบบบบบบบบบ	Cleavage
	5148						GAAAAAGAC	UCAAUCCAAA	
csn-miRn82	TCONS_0002	4	1	24	1816	1839	UUUGGAAAGAGAAAA	UUGUUCUUCUUC	Cleavage
	2462						GAAAAAGAC	UCUUUAUAAA	

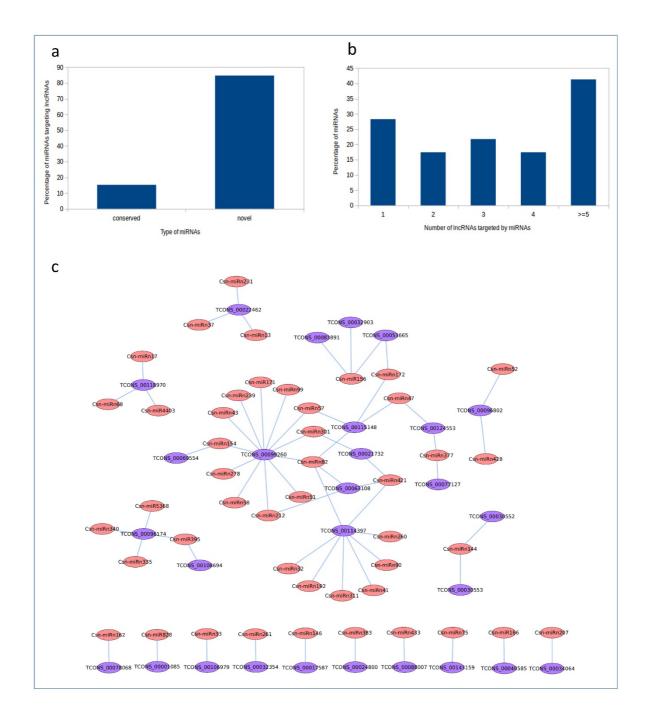


Fig. 4.37 (a) Percentage of novel and conserved *C. sinensis* miRNAs putatively targeting DELs (b) Percentage of miRNAs targeting on DELs (c) Interactive networks of *C. sinensis* miRNAs and DELs represented by pink and purple ellipse nodes respectively. The connection between miRNAs and lncRNAs are shown as blue edges.

>csn-miR1310a Query: Sbjct:	Score: 4 TCONS_00028490 V V 1 AACTTTAAATA-GGTAGG 17 1100000000000000000000000000000000000
>csn-miR171c Query: Sbjct:	Score: 4 TCONS_00087056 1 TTGAGCCGTGCCAATATCGC 20 1 IIIIIIII 11101111 917 AACTCGGTGTTTAGGTTTTAGCG 895
>csn-miR2936 Query: Sbjct:	Score: 4 TCONS_00129063 V V 1 AGAGAGAGAAC-ACAGAG 17 0 0 33 TCTCTCCATCGGCTGACTC 14
>csn-miR5558 Query: Sbjct:	Score: 3.5 TCONS_00034064 v v v 1 TTTAGAATTAGAATAGC 17 11:: !!!!!!!!! !!!!!!!! 330 AAGTCTTAATTTCCTTTTTA 311
>csn-miR6173 Query: Sbjct:	Score: 3.5 TCONS_00128571 v v 1 AAAGCTAGGGGAGCGAA 17 : : 158 TTTCGGTCTCAGACTCGTAT 139
>csn-miRn2 Query: Sbjct:	Score: 3 TCONS_00088006 V V 1 ATTCCTACTGGATGCACCA 19 I: : 0 45 TGAGGGTGACAAACTAAGTGGT 24

Fig. 4.38 Result of the lncRNA mimic analysis. Query signifies miRNA and Subject signifies lncRNAs. Score determines the expectation threshold; Dash (-) determines bulge formation.

>csn-miR156h Score: 2.5 TCONS_00129063 Query: 1 TGACAGAAGAGAGAGAGAGAGACA 21 *||*|||||||||||*|*| 54 TCTCTCTTCTCTCTC-TCT 35 Sbjct: >csn-miR156h Score: 2.5 TCONS_00053665 Query: 1 TGACAGAAGAGAGAGAGAGAGAC-ACA 21 *||*||||||||||*|*| Sbjct: 246 TCTCTCTCTCTCTCGATAT 225 >csn-miR156h Score: 2.5 TCONS_00129063 1 TGACAGAAGAGAGAGAGAGCACA 21 Query: *||*|||||||||||*|*| 54 TCTCTCTTCTCTCTCTCT 35 Sbjct: >csn-miR156h Score: 2.5 TCONS_00053665 Query: 1 TGACAGAAGAGAGAGAGAGAC-ACA 21 *||*|||||||||||*|*| 246 TCTCTCTTCTCTCTCCGATAT 225 Sbjct:

Fig. 4.39 miRNA targeting lncRNA analysis through psRobot_tar; Score depicts the expectation threshold; Query determines the miRNA and subject determines the lncRNA; Asterisks (*) determine unpaired regions.

Previous high-throughput in silico assays have reported the post-transcriptional gene regulation by lncRNAs acting as ceRNAs that competitively block the interaction between miRNAs and target mRNAs (Fu et al. 2019; He et al. 2019; Zhou et al. 2020; Han et al. 2021). Assessment of the miRNA-lncRNA-mRNA interactome was performed for DELs and DEGs identified from untreated and TMB-treated samples. First, RNAhybrid formation between miRNA-DEL and miRNA-DEG pairs were assessed, followed by cross-checking the presence of common miRNAs in both the datasets. Finally, DELs and DEGs sharing same miRNA were considered and fetched into Cytoscape for miRNA-IncRNA-mRNA network construction. The miRNA-IncRNA-mRNA network comprised of 28 miRNAs, 11 DELs and 14 DEGs. Interestingly, it was found that 7 miRNAs belonging to the family of miR156 target 3 DELs TCONS 00083891, TCONS 00053665 and TCONS 00032903 and 6 DEGs. These DEGs code for SPL (Squamosa promoter binding like) transcription factors that regulate phase transition and plant development, and pentatricopeptide repeat containing protein (PPR protein) that are characterized by the presence of tandem repeats of degenerate 30-35 amino acid residues. Previous reports suggest that the conserved miR156 targets SPL transcription factors and the miR156-SPL module has been widely investigated and studied in relation to plant development and stress response (Jeyakumar et al. 2020; Bordoloi and Agarwala, 2021). Also, PPR proteins are reported to be induced in response to various abiotic/biotic stimuli (Chen et al. 2018; Xing et al. 2018). The conserved miR171 targets TCONS 00099260 and 2 DEGs that code for a PPR protein and a GRAS family transcription factor. The involvement of GRAS family transcription factors in plant growth and development and insect stress response is well studied (Grimplet et al. 2016; Bordoloi and Agarwala, 2021). Other conserved miRNAs viz. miR395, miR5368, miR473, miR477, miR166 and miR4403 form network with 5 DELs and 5 DEGs. These DEGs represent aspartyl proteases, DELLA proteins and homeodomain leucine zipper proteins (HD-Zip). HD-Zip proteins consist of a characteristic DNA-binding domain that regulate various plant developmental processes is response to altered environmental conditions (Zahur *et al.* 2013). Reports of the involvement of DELLA proteins in the jasmonic acid (JA) and gibberellic acid (GA) crosstalk suggest the important role of these growth repressors in plant-insect interaction (Lan *et al.* 2014). Plant aspartyl proteases are an integral part of the plant immunity and play imperative role in plant-pathogen interaction (Figueiredo *et al* 2021). The DELs forming a competing network with miRNAs and DEGs that possess great significance in plant-insect interaction clearly indicates the involvement of these DELs in tea plant's response to TMB infestation.

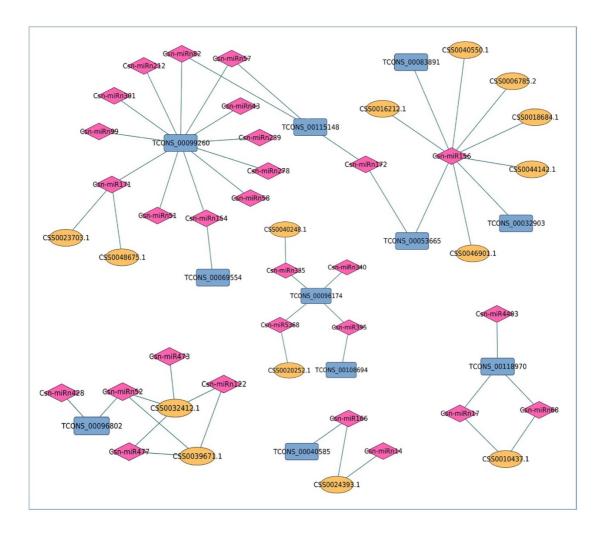


Fig. 4.40 TMB-responsive miRNA-lncRNA-mRNA network in *C. sinensis*. miRNAs, mRNAs and lncRNAs are represented by pink prismatic shape, yellow ellipse and blue round rectangles respectively. The interactions between the RNA molecules are depicted by blue edges.

>csn-miR172g-3p Score: 2.5 CSS0016124.1 Query: 1 AGAATCTTGATGATGCTGCATG 22 |||||||*|||* Sbjct: 449 TCTTAGAGCTACTTCGACCAAC 428 >csn-miR172g-3p Score: 1.2 CSS0037440.1 Query: 1 AGAATCTTGATGATGCTGCATG 22 ||||||*:||||||||||||| Sbjct: 1330 TCTTAGGACTACTACGACG-GC 1310 >csn-miR1310a Score: 2.5 CSS0028947.1 1 AACTTTAAATAGGTAGG 17 Ouerv: |||||*|||* Sbict: 698 TTGAAGTTTATCAATCG 682 >csn-miR1310a Score: 2.5 CSS0030458.1 Query: 1 AACTTTAAATAGGTAGG 17 |||:||*|*|||||||| 1342 TTGGAAATAATCCATCC 1326 Sbjct:

Fig. 4.41 miRNA targeting mRNA analysis through psRobot_tar; Score depicts the expectation threshold; Query determines the miRNA and subject determines the mRNA; Asterisks (*) determine unpaired regions.

To predict whether the *C. sinensis* miRNAs had any binding affinity with the identified DECs, we searched for the sequence complementarity between *C. sinensis* miRNAs and DECs. A total of 17 DECs were predicted to be potential targets for 55 *C. sinensis* miRNAs. These 17 DECs were also assessed for their potential to act as miRNA sponges. The DECs were found to be eTMs of 9 DEGs. The DEC Csi_circRNA_282 has been predicted to mimic 3 DEGs (CSS0022312.1, CSS0030486.1 and CSS0007153.1), two of which code for the enzyme phospholipase and the third one codes for a lectin-receptor like kinase (LecRLK). Another DEC Csi_circRNA_219 has been found to be a decoy of 3 genes (CSS0040248.1, CSS0043875.1 and CSS0012190.2) coding for enzymes aspartyl protease and tropinone reductase. Other genes potentially mimicked by identified DECs include condensin complex subunit (CSS0013476.1) and DNA helicase

(CSS0007026.1). Fig. 4.42 depicts the miRNA-circRNA-mRNA interaction network. Three types of interactions are observed in the network (a) a single circRNA acting as a target for a single miRNA (b) a single circRNA acting as a target for more than one miRNA (c) genes and circRNAs acting as common miRNA targets. From the network visualization, it is evident that tea plant circRNAs might play inevitable role in regulation of gene expression by acting as common miRNA targets or miRNA sponges.

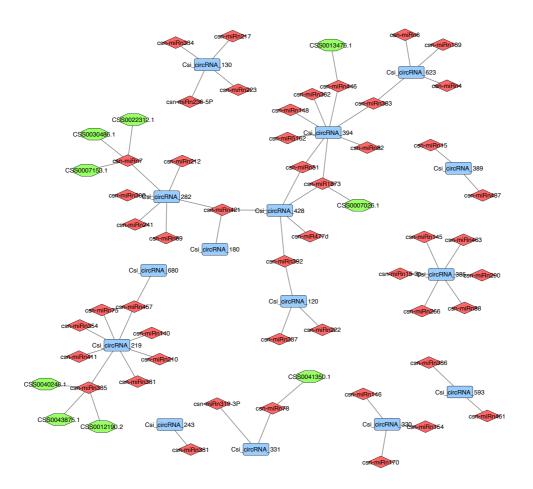


Fig. 4.42 *C. sinensis* miRNA-DEC-DEG interaction network. miRNAs, genes and circRNAs are represented by red diamonds, green octagons and blue rectangles respectively. The connections between the RNA molecules are depicted by black edges.

miRNA	Target	E-	miRNA_start	miRNA	Target_start	Target	miRNA_aligned_fragment	Target_aligned_fragment	Inhibition
		value		_end		_end			
csn-	Chr11:34838916-	1.5	1	24	4414	4437	AUCCGAUAGACAUGAUUUUU	UAUAAAAAAUCACGUCUAUCG	Cleavage
miRn222	34896102						UACA	GAU	
csn-	Chr11:34838916-	2	1	24	5246	5269	AAAUAUAAACCUCAAGGGAC	AUUUACCCCCUGAGGUUUAUA	Cleavage
miRn337	34896102						GAGA	υυυ	
csn-	Chr11:34838916-	2	1	24	38689	38712	UUUAGAAAGAGAAAUAGAAA	UUUCCUUUUAUUUUUUUUUUUUU	Cleavage
miRn392	34896102						AGGU	GAA	
csn-	Chr11:34838916-	2	1	24	8662	8685	UUUAGAAAGAGAAAUAGAAA	UUUCCUUUUAUUUUUUUUUUUUU	Cleavage
miRn392	34896102						AGGU	GAA	
csn-	Chr11:59408657-	0.5	1	24	40510	40533	AUGGACCAAAUUGACACAUC	ACACAAUGUGUCAAUUUGGUC	Cleavage
miRn58	59454641						AUGU	UAU	
csn-	Chr11:59408657-	1	1	24	40501	40524	AUUGACACAUUGUAUAAACU	CAAUAGUUUACACAAUGUGUC	Cleavage
miRn334	59454641						ACAA	AAU	
csn-	Chr11:59408657-	1.5	1	24	40863	40886	AUACGAUGUGUCAAUUUGGU	AGUGACCAAAUUGAUACAUUG	Cleavage
miRn236	59454641						ACCU	UGU	
csn-	Chr11:59408657-	2	1	24	40501	40524	AUUGACACAUUGUUUAACCU	CAAUAGUUUACACAAUGUGUC	Cleavage
miRn217	59454641						UCCG	AAU	
csn-	Chr11:59408657-	2	1	24	40512	40535	AUAGAGACCAAAUUGACACA	ACAAUGUGUCAAUUUGGUCUA	Cleavage
miRn223	59454641						UUGU	UGU	
csn-	Chr12:11978061	0	1	21	3467	3487	CCCGCCUUGCAUCAACUGAA	AUUCAGUUGAUGCAAGGCGGG	Cleavage
miR168a	3-119784161						U		

Table 4.8 List of DECs being targeted by C. sinensis miRNAs

csn-	Chr12:11978061	0	1	22	3466	3487	CCCGCCUUGCAUCAACUGAA	GAUUCAGUUGAUGCAAGGCGG	Cleavage
miR168a	3-119784161						UU	G	
csn-	Chr12:11978061	1	1	21	3467	3487	CCCGCCUUGCAUCAACCGAA	AUUCAGUUGAUGCAAGGCGGG	Cleavage
miR168c	3-119784161						U		
csn-	Chr13:10178594	2	1	24	3085	3108	UUUAGAAAGGAAAAGAAAAA	υςυπηπηπηπηπηπηπηπη	Cleavage
miRn421	1-101800633						AGAU	AAA	
csn-	Chr13:95736514-	1	1	24	50388	50411	UGAACAAGUUACAGUUAUUG	GAUCCGAUAACUGUAACUUGU	Cleavage
miRn210	95828107						GAUU	UUA	
csn-	Chr13:95736514-	1.5	1	24	73273	73296	UGGUCAUGGAAGCAACAAAA	UGCCAUUUGAUGCUUCCAUGA	Cleavage
miRn140	95828107						CAAG	UCA	
csn-	Chr13:95736514-	2	1	24	34772	34795	GAAAGGAAAAUGAAAAAAGU	AUGUUAUUUUUUCAUUUUUUU	Cleavage
miRn335	95828107						AGGU	UUC	
csn-	Chr13:95736514-	2	1	24	50383	50406	AAGUUAUAAUUAUCGGAUCA	AGGUCGAUCCGAUAACUGUAA	Cleavage
miRn354	95828107						GCCU	CUU	
csn-	Chr13:95736514-	2	1	25	43372	43396	AAUAAUCAUGAAAGAUUUGU	AUAAAGCAAAUGUUUCAUGAU	Cleavage
miRn381	95828107						GAUCA	UAUG	
csn-	Chr13:95736514-	2	1	23	13157	13179	AAGAGAUUUUGGAAAGGAAAA	UUCUUUAUCUUUUCAAAUCUC	Cleavage
miRn411	95828107						CGG	UU	
csn-	Chr13:95736514-	2	1	24	69982	70005	AUACUAAUUAGUGCAUGUAG	GAUACUACAUGCACCAAUUAG	Translation
miRn457	95828107						UACC	UGU	
csn-	Chr13:95736514-	2	1	24	50387	50410	AAACAAGUUACAAUUGUCGG	CGAUCCGAUAACUGUAACUUG	Cleavage
miRn75	95828107						ACCC	υυυ	
csn-	Chr14:49644209-	2	1	24	17466	17489	AUGAUCAUGAAAGAUUUGUA	UAUGGACUAAGCUUUCAUGAU	Cleavage
miRn331	49664819						ACCU	CAU	

csn-	Chr15:36236089-	1	1	24	9473	9496	AUUGAUCGGAUAUCGAUAGU	AAUAGUUAUCGAUAUCUGAUC	Cleavage
miRn241	36288888						AACU	AAU	
csn-	Chr15:36236089-	1	1	24	44390	44413	AAAUUCUUGAACCAAAUGCA	AGGCUGUAUUUGGUUCAAGGA	Cleavage
miRn7	36288888						GCCU	UUU	
csn-	Chr15:36236089-	1.5	1	24	8030	8053	UUGGAAAAGGAAAGGGAAAA	υυυυυυυοςοςυυυυυυυυυ	Cleavage
miRn212	36288888						UGUC	CAA	
csn-	Chr15:36236089-	1.5	1	25	9386	9410	CUGAUUUGAUCACAUAGCUA	ACCGAUAGCUAUGUGAUCAAA	Cleavage
miRn300	36288888						UUGAA	UGAG	
csn-	Chr15:36236089-	1.5	1	24	6489	6512	GUUUGGCUGGAGGAUUUGGA	CCUCCCCAAAUCCUCCAACCAA	Cleavage
miRn69	36288888						AAAG	AC	
csn-	Chr15:36236089-	2	1	24	41659	41682	UUUAGAAAGGAAAAGAAAAA	AGCAUUUUUUUUUUUUUUUUUU	Cleavage
miRn421	36288888						AGAU	AGA	
csn-	Chr2:28206828-	0	1	24	75479	75502	AUUGAUCGGAUAUCGAUAGU	GAUAGCUAUCGAUAUCCGAUC	Cleavage
miRn241	28300807						AACU	AAU	
csn-	Chr2:28206828-	1	1	24	75485	75508	AAUCAUAUUGAUCGGAUACC	UAUCGAUAUCCGAUCAAUAUG	Cleavage
miRn170	28300807						AAUA	AUU	
csn-	Chr2:28206828-	1.5	1	24	14028	14051	AAGAGAUUUAGAAAAGAAAA	AUAUAUAUCUUUUUUAAAUCU	Cleavage
miRn146	28300807						AGAA	CUU	
csn-	Chr2:28206828-	1.5	1	24	66749	66772	UUUGAAAAGGGAAAUGGAAA	UACGUUUGCAUUUCCCUUUUU	Cleavage
miRn154	28300807						ACAU	AAA	
csn-	Chr2:30957568-	0	1	24	11101	11124	UAAAAUUGACUGAUCAGUUA	AGCCUAACUGAUCAGUCAAUU	Cleavage
miRn124	30972440						GACU	UUA	
csn-	Chr2:30957568-	2	1	24	8531	8554	AUUCAGAAUGAUGUGGCAAU	CUCCCUUGCCACAUCAUUAUGA	Cleavage
miRn319	30972440						GGUA	GU	

csn-	Chr2:30957568-	2	1	24	7309	7332	AAUUCGAGCCAUUUGAACCA	ACAUAGGUUCCAGUGGCUCGA	Cleavage
miRn78	30972440						CAGA	GUU	
csn-	Chr3:24712125-	0.5	1	24	3910	3933	AUGUGUAAAAAGUGUAUUAA	AAUUUUAAUAUACUUUUUACA	Cleavage
miRn290	24723830						AAUA	CAU	
csn-	Chr3:24712125-	1.5	1	24	10345	10368	AUGUUAGAGGACCACAAUUU	ACAAAAAUUGUGGUCCUCAAA	Cleavage
miRn145	24723830						UUGU	CAU	
csn-	Chr3:24712125-	1.5	1	24	10346	10369	AAUGUUUGAGGGCCACAAAA	CAAAAAUUGUGGUCCUCAAAC	Cleavage
miRn266	24723830						UCAG	AUU	
csn-	Chr3:24712125-	1.5	1	24	7838	7861	AUGUGUAAAAAGUGUAUUAA	AAUUUUAAUAUAUUUUUUAUA	Cleavage
miRn290	24723830						AAUA	CAU	
csn-	Chr3:24712125-	1.5	1	24	7501	7524	UACACUAAUUGAUACAUGUA	GUACUACAUGUAUCAAUUAGU	Cleavage
miRn88	24723830						GCCU	AUA	
csn-	Chr3:24712125-	2	1	21	1216	1236	UGAAUGGUAUGAAUCACUUU	AAAAUUGAUUUAUACCAUUUA	Cleavage
miRn15-	24723830						G		
csn-	Chr3:24712125-	2	1	24	10227	10250	ACAAAAAUUGUGGCACUCAA	AUGCUAGAGGGCCACAAUUUU	Cleavage
miRn463	24723830						ACAU	UGU	
csn-	Chr3:28928697-	2	1	24	9249	9272	AUACUUGGUAGCUCGAAUUU	UGCUCAACCCGAGCUACCAAGU	Cleavage
miRn15	28958380						GUGU	AU	
csn-	Chr3:28928697-	2	1	24	8605	8628	AUGAAUGGUGUAGAUCAGUA	GAAUCAUUCAUCUACACUAUU	Cleavage
miRn437	28958380						AGGG	CAU	
csn-	Chr3:32458632-	0.5	1	24	5445	5468	AAAGAAAAUGAGAUAUCCGU	AGGCACGGAUAUCUCGUUUUC	Cleavage
miRn471	32484366						GCCU	UUU	
csn-	Chr3:32483405-	1	1	20	127609	127628	UGGCUCUGAUACCAUGUUGA	UUAACAUGGUAUCAGAGCCG	Cleavage
miR1873	32623875								

csn-	Chr3:32483405-	1.5	1	24	106234	106257	AGUGAUUUGGAAAACGAAAG	UUCUCUUUCUUUUUUCAAAUC	Cleavage
miRn51	32623875						AGAA	ACU	
csn-	Chr3:32483405-	1.5	1	24	55141	55164	UUUGGAAAGAGAAAAGAAAA	CAACGAUUUUUUUUUUUUUUUU	Cleavage
miRn82	32623875						AGAC	AAA	
csn-	Chr3:32483405-	2	1	24	22898	22921	AUGACCAAAAUACCCCUAGA	AAGUGUUAGGGGUAUUUUGGU	Cleavage
miR5162	32623875						ACAU	CUU	
csn-	Chr3:32483405-	2	1	24	106240	106263	UUGAGAAGCGAUUUGGAAAG	UUCUUUUUUCAAAUCACUUCU	Cleavage
miRn148	32623875						AGAA	CAA	
csn-	Chr3:32483405-	2	1	24	23861	23884	UUCGGAAAUUACAGAUACCC	CAAGGGGUAUUUGUAAUUUCC	Cleavage
miRn362	32623875						UCCU	CAA	
csn-	Chr3:32483405-	2	1	24	23863	23886	AUUUGAGAAAUUACAGAUAC	AGGGGUAUUUGUAAUUUCCCA	Cleavage
miRn383	32623875						UCCC	AAU	
csn-	Chr3:32483405-	2	1	24	33608	33631	AGAAGAGAAUGUAUUUGAAA	CAAAUUUCAAAUAUCUUCUCU	Translation
miRn446	32623875						CAAA	UCU	
csn-	Chr3:32483405-	2	1	24	127607	127630	AAUGGCUCUGAUACCAUGUU	AUUUAACAUGGUAUCAGAGCC	Cleavage
miRn51	32623875						GAAA	GGU	
csn-	Chr4:161368403-	1	1	24	44025	44048	AAUGGCUCUGAUACCAUGUU	AACUUACAUGGUAUCAGAGCC	Cleavage
miRn51	161435297						GAAA	AUC	
csn-	Chr4:161368403-	1.5	1	24	20785	20808	UUUAGAAAGAGAAAUAGAAA	AAACUUUCUCUUUUUUUUUUUUUU	Cleavage
miRn392	161435297						AGGU	AAA	
csn-	Chr4:161368403-	1.5	1	24	20785	20808	UUUAGAAAGGAAAAGAAAAA	AAACUUUCUCUUUUUUUUUUUUUUU	Cleavage
miRn421	161435297						AGAU	AAA	
csn-	Chr4:161368403-	2	1	20	44027	44046	UGGCUCUGAUACCAUGUUGA	CUUACAUGGUAUCAGAGCCA	Cleavage
miR1873	161435297								

csn-	Chr4:161368403-	2	1	20	56331	56350	AAAGGCUUCCAAUAUUCUAU	GCAGAAUGUUGGAAGCUUUU	Cleavage
miR477d	161435297								
csn-	Chr8:37959648-	1.5	1	24	9506	9529	AUGACCCUUGGAUUACACUU	UUCUAAGUGUAAUCCAAGGGU	Cleavage
miRn336	37979650						AGAA	UAC	
csn-	Chr8:37959648-	2	1	24	9511	9534	GUUUUGUGACCCUUGAAUUA	AGUGUAAUCCAAGGGUUACAA	Cleavage
miRn461	37979650						CACU	AGC	
csn-	Chr9:15929212-	1.5	1	24	3484	3507	AUUUGAGAAAUUACAGAUAC	AAUAAAAUCUGUGAUUUCUCA	Cleavage
miRn383	15985356						UCCC	AAU	
csn-	Chr9:15929212-	1.5	1	21	17810	17830	UCUCUUCUAUAUAUAGGCAU	GAUUCCUAUAUAUAGAAGAGG	Cleavage
miRn4	15985356						С		
csn-	Chr9:15929212-	1.5	1	21	20605	20625	UCUCUUCUAUAUAUAGGCAU	GAUUCCUAUAUAUAGAAGAGG	Cleavage
miRn4	15985356						С		
csn-	Chr9:15929212-	1.5	1	21	17810	17830	UCUCUUCUAUAUAUAGGCAU	GAUUCCUAUAUAUAGAAGAGG	Cleavage
miRn6	15985356						С		
csn-	Chr9:15929212-	1.5	1	21	20605	20625	UCUCUUCUAUAUAUAGGCAU	GAUUCCUAUAUAUAGAAGAGG	Cleavage
miRn6	15985356						С		
csn-	Chr9:15929212-	2	1	24	791	814	AGAAAAUUUGGUGUCUCUAA	AAUGUUAGGGAUAUCAAAUUU	Cleavage
miRn139	15985356						CAUU	UUU	
csn-	Contig426:21859	2	1	24	3459	3482	AUACUAAUUAGUGCAUGUAG	ACUAGUAUGUGCACUAAUUAG	Cleavage
miRn457	0-239885						UACC	UAC	

4.8 ceRNA network

To have a complete overview of the interaction between genes and ncRNAs during tea-TMB communication, construction of a ceRNA network involving mRNAs, miRNAs, lncRNAs and circRNAs was done in order to reflect an overall picture of the ceRNA network. The ceRNA network included 5 lncRNAs, 17 circRNAs, 33 mRNAs and 37 miRNAs.

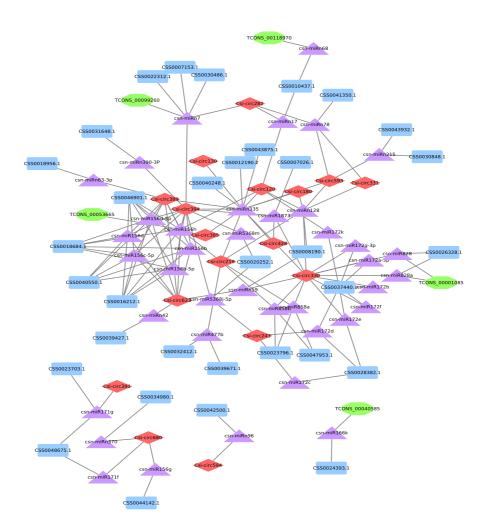


Fig. 4.43 TMB-responsive ceRNA network in *C. sinensis*. miRNAs, mRNAs, lncRNAs and circRNAs are represented by purple prismatic shape, blue round rectangles, green octagons and red diamonds respectively. The interactions between the RNA molecules are depicted by black edges.