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Abstract
Helopeltis theivora or the tea mosquito bug (TMB) is reportedly one of the most devastating pests of tea plant (Camellia 
sinensis) causing threat to the beverage crop. Long non-coding RNAs (lncRNAs) constitute a group of endogenous RNAs that 
play gene regulatory roles in eukaryotes. In the present study, 9502 lncRNAs were identified from healthy and TMB-infested 
C. sinensis tissues using high-throughput strand-specific RNA sequencing, out of which 80 lncRNAs got differentially 
expressed in response to TMB infestation. Determination of genes that could act as potential targets of lncRNAs revealed 
that the identified lncRNAs could possibly target as many as 5804 genes. Differential gene expression (DGE) analysis led 
to the identification of 3665 differentially expressed genes (DEGs), of which, the expression of 1767 genes got upregulated 
and 1898 genes got downregulated during tea plant’s response to TMB. Gene Ontology (GO) and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) enrichment analysis of DEGs and lncRNA-target genes have shown that TMB infestation 
might have triggered transcriptomic reprogramming leading to altered primary and secondary metabolism in C. sinensis. 
LncRNAs can act as competing endogenous RNAs (ceRNAs) to bind with common microRNA (miRNA) response elements 
(MREs) involving a competition between mRNAs and lncRNAs. We report 11 lncRNAs competing with 14 mRNAs to bind 
with 28 miRNAs forming the ceRNA network. The expression of 6 DEGs and 5 differentially expressed lncRNAs (DELs) 
has been validated by qRT-PCR.

Keywords Long non-coding RNA · Camellia sinensis · Transcriptome · Helopeltis theivora · High-throughput RNA 
sequencing · ceRNA

Introduction

Tea, being a perennial monocultured crop, attracts a huge 
number of insect pests thus limiting its production. Tea plant 
serves as a suitable host plant for a large range of insect 
pests and other algal, fungal, and bacterial pathogens which 
leads to serious loss of yield (Roy et al. 2015). However, 

among the biotic agents causing stress in tea plants, the 
tea mosquito bug (TMB), Helopeltis theivora Waterhouse 
is one of the most devastating pests of Camellia sinensis. 
Large-scale and indiscriminate use of pesticides to manage 
TMB is not only adversely affecting the natural ecosystem 
but also creating problems of pesticide residue in made tea 
(Roy et al. 2009).

The genus Helopeltis has about 41 species (Schmitz 
1968, 1988). But only three of them namely H. antonii, H. 
theivora, and H. bradyi are reported in India (Stonedahl 
1991; Sundararaju 1996). In India, significant damages to 
the tea crop have been observed to be caused by H. theivora. 
TMB belongs to the group of sap-sucking mirids of the order 
Hemiptera. North-East India reports a significant loss of 
15–20 lakh kgs of commercial tea each year due to TMB 
infestation. The TMB normally feeds on young shoots and 
new flushes. It sucks the sap from tissues through proboscis. 
Feeding of TMB results in the formation of a circular ring 
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A B S T R A C T   

The tea mosquito bug (TMB) or Helopeltis theivora has been reported as a significant tea pest that causes major tea 
crop loss. Circular RNAs (circRNAs) are a newly discovered group of the non-coding RNA (ncRNA) and are 
known to function in gene regulation process. Tea plant (Camellia sinensis) has not been explored for the 
detection of circRNAs during pest infestation. This is the first report of circRNAs identified in C. sinensis infested 
by a sap-sucking insect H. theivora. In total, we identified 709 circRNAs in six RNA-seq libraries. Analysis of the 
differential expression pattern revealed that 34 circRNAs got upregulated/downregulated in response to 
H. theivora attack. Functional annotation and enrichment analysis of the differentially expressed circRNAs 
showed that the circRNA-target genes were enriched in biological pathways like “tryptophan metabolism”, 
“biosynthesis of secondary metabolites”, “porphyrin metabolism”, “nucleocytoplasmic transport”, “N-glycan 
biosynthesis” etc. miRNA-mediated interaction analysis of the circRNAs also showed that 17 differentially 
expressed circRNAs could also act as “sponges” thus masking the miRNA-mRNA binding and subsequently 
repressing mRNA cleavage. These differentially expressed circRNAs were predicted to have the capacity to 
behave as endogenous target mimics (eTMs) for potential genes like aspartyl protease, phospholipase, lectin 
receptor etc.   

Background 

Plants often undergo biotic stresses mainly posed by microbes such 
as bacteria, fungi and viruses as well as insect pests (Gull et al., 2019). 
The role of pattern recognition receptors (PRRs) come to play during 
plant’s perception to herbivory. Plants recognize herbivory or insect 
attack through binding of PRRs with damage associated molecular 
patterns (DAMPs) released after wounding or herbivore associated 
molecular patterns (HAMPs) which are active components of herbivor-
e/insect’s salivary secretions. Sensing of HAMPs or PAMPs triggers the 
downstream signaling cascades in the plant cell like production of 
reactive oxygen species (ROS), rise in cytosolic Ca2+concentration, 
membrane depolarization, MAPK cascade signaling. Defense signaling is 
a complicated process and involves multiple genes and their compo-
nents. These early signaling events lead to reprogramming of defense 
hormonal pathways like those of salicylic acid (SA) and jasmonic acid 
(JA) and thereby defense is accomplished (Erb and Reymond, 2019). 
Previous reports provided evidence regarding the involvement of 
non-coding RNAs (ncRNAs) like long non-coding RNAs (lncRNAs) and 

circular RNAs (circRNAs) in regulation of defense hormone signaling (Li 
et al., 2021; Zhang et al., 2020). With rapid development of 
high-throughput sequencing technology, a large number of ncRNAs like 
lncRNAs and miRNAs, were identified and confirmed as the crucial 
regulator for gene expression and biological function in different bio-
logical processes (Shafiq et al., 2015; Budak et al., 2020; Bordoloi and 
Agarwala, 2021; Bordoloi et al., 2021a,2021b; Baruah et al., 
2021a;2021b). As an important gene expression regulator amongst 
ncRNAs, circRNAs are a novel class of endogenous ncRNAs character-
ized by the existence of a covalent bond linking the 3′ and 5′ ends. 
Different from the traditional linear RNAs terminated with 3′ tails and 5′

caps, circRNAs could form covalently closed ring structures by 
back-spliced circularization without 5′–3′ polarities (Chen 2016). They 
arise as products of post-transcriptional mRNA maturation during 
splicing. Their formation take place when back splicing (head-to-tail 
splicing) occurring between downstream donor segment and upstream 
acceptor segment generates a covalently closed RNA molecule which is 
circular in form (Ashwal-Fluss et al., 2014; Suzuki and Tsukahara, 
2014). They may derive from exons (exonic circRNA), introns (intronic 
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A B S T R A C T   

Insects are a threat to plants and cause havoc in considerable ways. Interestingly, a group of small non-coding 
RNAs called microRNAs (miRNAs) are found to be associated with the regulatory processes of plants both in 
pre and post-infestation scenarios either elevating or demoting expression levels of different genes involved in 
plant-insect interaction. Studies show roles of a number of miRNAs during plant-insect interaction targeting a 
range of genes from transcription factors (TFs) to genes involved in plant growth and development, from 
transmembrane receptors to molecules involved in various signalling pathways. The role of miRNAs in regulating 
phytohormone signalling show the complex interaction of miRNA/mRNA modules in plant-insect herbivory. 
Biotechnological approaches involving RNAi strategy prove to be successful in eradicating pests. In this review, 
we have discussed the progress made so far in understanding the role of miRNAs in plant insect interactions and 
artificial miRNA (amiRNA) mediated RNAi strategies used to combat the menace of insect pests in plants.   

1. Introduction 

Small non-coding RNAs (sRNAs) of ~20–30 nucleotides in length are 
found to control gene expression in eukaryotes by regulation of genes 
that share complementarity with the regulating sRNA molecules. These 
micromanagers of gene expression play an undeniable role in changing 
the expression patterns of genes in tissue-specific manner, thus con-
trolling the overall metabolism and physiological processes of the or-
ganism (Bartel, 2004). Among the non-coding sRNAs, small-interfering 
RNAs (siRNAs) and microRNAs (miRNAs) are the major regulators in 
silencing the expression of certain genes. Although the mechanism of 
action of both siRNAs and miRNAs are almost similar but both of the 
classes of sRNAs follow different paths of biogenesis (Carthew and 
Sontheimer, 2009). 

miRNAs are 19–24 nucleotides (~22 nt) long endogenous molecules, 
that serve as regulators of endogenous nucleic acids either by the 
degradation of complementary mRNA transcripts or by inhibiting the 
translation process (Bartel, 2004; Chen, 2005; Brodersen et al., 2008; 
Wang et al., 2019). The first miRNA identified was that of the lin-4 
product in the nematode Caenorhabditis elegans (Lee et al., 1993). In a 
pioneering work, it was seen that the lin-4 gene doesn’t code for any 
protein, rather some 22 nt and 61 nt long products were formed which 
had high complementarity with the 3′ UTR of the transcript of the gene 
lin-14. The longer product acted as the precursor for the shorter product 
by folding itself into a stem loop structure. Lin-4 gene products were seen 

to repress the lin-14 gene activity during larval developmental stages of 
C. elegans (Bartel, 2004; Lee et al., 1993; Wightman et al., 1993). Pro-
gressive studies revealed the role of miRNAs in different metabolic 
processes of both plants and animals. For instance, Arabidopsis CAF 
(Carpel Factory) gene which is homologous to Dicer proteins, codes for a 
protein with RNA helicase activity at the N-terminal domain and RNase 
III-like activity at the C-terminal domain. This CAF gene product was 
shown to associate with determinate floral development (Jacobsen 
et al., 1999) and miRNA processing activities in Arabidopsis (Reinhart 
et al., 2002). The caf mutants showed reduced accumulation of miRNAs 
(Reinhart et al., 2002) and indeterminate floral development in Arabi-
dopsis (Jacobsen et al., 1999). The miRNA biogenesis and processing can 
be regulated by plants in response to external factors (Manavella et al., 
2019). 

miRNAs are synthesized by RNA-Pol II from non-coding regions of 
DNA, especially introns and very rarely from 5′UTR and 3′UTR regions 
(Carthew and Sontheimer, 2009). RNA-Pol II transcribes the regions of 
the DNA into long primary transcripts being capped and polyadenylated 
called the pri-miRNAs which then fold to form a looped double stranded 
structure (Carthew and Sontheimer, 2009; Pareek et al., 2015). The pri- 
miRNAs are then cut into 500–800 nucleotides long pre-miRNAs by an 
enzyme called DCL1 (Dicer Like 1) that has RNaseIII activity with the 
coordination of HYL1 (Hyponastic Leaves 1), a dsRNA binding protein 
and SE (Serrate), a zinc finger protein (Pareek et al., 2015; Zhu, 2008; 
Zhuo et al., 2013). The unstable pre-miRNAs are converted to miRNA: 
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Abstract
Helopeltis theivora or the tea mosquito bug (TMB) is reportedly one of the most devastating pests of tea plant (Camellia 
sinensis) causing threat to the beverage crop. Long non-coding RNAs (lncRNAs) constitute a group of endogenous RNAs that 
play gene regulatory roles in eukaryotes. In the present study, 9502 lncRNAs were identified from healthy and TMB-infested 
C. sinensis tissues using high-throughput strand-specific RNA sequencing, out of which 80 lncRNAs got differentially 
expressed in response to TMB infestation. Determination of genes that could act as potential targets of lncRNAs revealed 
that the identified lncRNAs could possibly target as many as 5804 genes. Differential gene expression (DGE) analysis led 
to the identification of 3665 differentially expressed genes (DEGs), of which, the expression of 1767 genes got upregulated 
and 1898 genes got downregulated during tea plant’s response to TMB. Gene Ontology (GO) and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) enrichment analysis of DEGs and lncRNA-target genes have shown that TMB infestation 
might have triggered transcriptomic reprogramming leading to altered primary and secondary metabolism in C. sinensis. 
LncRNAs can act as competing endogenous RNAs (ceRNAs) to bind with common microRNA (miRNA) response elements 
(MREs) involving a competition between mRNAs and lncRNAs. We report 11 lncRNAs competing with 14 mRNAs to bind 
with 28 miRNAs forming the ceRNA network. The expression of 6 DEGs and 5 differentially expressed lncRNAs (DELs) 
has been validated by qRT-PCR.

Keywords Long non-coding RNA · Camellia sinensis · Transcriptome · Helopeltis theivora · High-throughput RNA 
sequencing · ceRNA

Introduction

Tea, being a perennial monocultured crop, attracts a huge 
number of insect pests thus limiting its production. Tea plant 
serves as a suitable host plant for a large range of insect 
pests and other algal, fungal, and bacterial pathogens which 
leads to serious loss of yield (Roy et al. 2015). However, 

among the biotic agents causing stress in tea plants, the 
tea mosquito bug (TMB), Helopeltis theivora Waterhouse 
is one of the most devastating pests of Camellia sinensis. 
Large-scale and indiscriminate use of pesticides to manage 
TMB is not only adversely affecting the natural ecosystem 
but also creating problems of pesticide residue in made tea 
(Roy et al. 2009).

The genus Helopeltis has about 41 species (Schmitz 
1968, 1988). But only three of them namely H. antonii, H. 
theivora, and H. bradyi are reported in India (Stonedahl 
1991; Sundararaju 1996). In India, significant damages to 
the tea crop have been observed to be caused by H. theivora. 
TMB belongs to the group of sap-sucking mirids of the order 
Hemiptera. North-East India reports a significant loss of 
15–20 lakh kgs of commercial tea each year due to TMB 
infestation. The TMB normally feeds on young shoots and 
new flushes. It sucks the sap from tissues through proboscis. 
Feeding of TMB results in the formation of a circular ring 
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A B S T R A C T   

The tea mosquito bug (TMB) or Helopeltis theivora has been reported as a significant tea pest that causes major tea 
crop loss. Circular RNAs (circRNAs) are a newly discovered group of the non-coding RNA (ncRNA) and are 
known to function in gene regulation process. Tea plant (Camellia sinensis) has not been explored for the 
detection of circRNAs during pest infestation. This is the first report of circRNAs identified in C. sinensis infested 
by a sap-sucking insect H. theivora. In total, we identified 709 circRNAs in six RNA-seq libraries. Analysis of the 
differential expression pattern revealed that 34 circRNAs got upregulated/downregulated in response to 
H. theivora attack. Functional annotation and enrichment analysis of the differentially expressed circRNAs 
showed that the circRNA-target genes were enriched in biological pathways like “tryptophan metabolism”, 
“biosynthesis of secondary metabolites”, “porphyrin metabolism”, “nucleocytoplasmic transport”, “N-glycan 
biosynthesis” etc. miRNA-mediated interaction analysis of the circRNAs also showed that 17 differentially 
expressed circRNAs could also act as “sponges” thus masking the miRNA-mRNA binding and subsequently 
repressing mRNA cleavage. These differentially expressed circRNAs were predicted to have the capacity to 
behave as endogenous target mimics (eTMs) for potential genes like aspartyl protease, phospholipase, lectin 
receptor etc.   

Background 

Plants often undergo biotic stresses mainly posed by microbes such 
as bacteria, fungi and viruses as well as insect pests (Gull et al., 2019). 
The role of pattern recognition receptors (PRRs) come to play during 
plant’s perception to herbivory. Plants recognize herbivory or insect 
attack through binding of PRRs with damage associated molecular 
patterns (DAMPs) released after wounding or herbivore associated 
molecular patterns (HAMPs) which are active components of herbivor-
e/insect’s salivary secretions. Sensing of HAMPs or PAMPs triggers the 
downstream signaling cascades in the plant cell like production of 
reactive oxygen species (ROS), rise in cytosolic Ca2+concentration, 
membrane depolarization, MAPK cascade signaling. Defense signaling is 
a complicated process and involves multiple genes and their compo-
nents. These early signaling events lead to reprogramming of defense 
hormonal pathways like those of salicylic acid (SA) and jasmonic acid 
(JA) and thereby defense is accomplished (Erb and Reymond, 2019). 
Previous reports provided evidence regarding the involvement of 
non-coding RNAs (ncRNAs) like long non-coding RNAs (lncRNAs) and 

circular RNAs (circRNAs) in regulation of defense hormone signaling (Li 
et al., 2021; Zhang et al., 2020). With rapid development of 
high-throughput sequencing technology, a large number of ncRNAs like 
lncRNAs and miRNAs, were identified and confirmed as the crucial 
regulator for gene expression and biological function in different bio-
logical processes (Shafiq et al., 2015; Budak et al., 2020; Bordoloi and 
Agarwala, 2021; Bordoloi et al., 2021a,2021b; Baruah et al., 
2021a;2021b). As an important gene expression regulator amongst 
ncRNAs, circRNAs are a novel class of endogenous ncRNAs character-
ized by the existence of a covalent bond linking the 3′ and 5′ ends. 
Different from the traditional linear RNAs terminated with 3′ tails and 5′

caps, circRNAs could form covalently closed ring structures by 
back-spliced circularization without 5′–3′ polarities (Chen 2016). They 
arise as products of post-transcriptional mRNA maturation during 
splicing. Their formation take place when back splicing (head-to-tail 
splicing) occurring between downstream donor segment and upstream 
acceptor segment generates a covalently closed RNA molecule which is 
circular in form (Ashwal-Fluss et al., 2014; Suzuki and Tsukahara, 
2014). They may derive from exons (exonic circRNA), introns (intronic 
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A B S T R A C T   

Insects are a threat to plants and cause havoc in considerable ways. Interestingly, a group of small non-coding 
RNAs called microRNAs (miRNAs) are found to be associated with the regulatory processes of plants both in 
pre and post-infestation scenarios either elevating or demoting expression levels of different genes involved in 
plant-insect interaction. Studies show roles of a number of miRNAs during plant-insect interaction targeting a 
range of genes from transcription factors (TFs) to genes involved in plant growth and development, from 
transmembrane receptors to molecules involved in various signalling pathways. The role of miRNAs in regulating 
phytohormone signalling show the complex interaction of miRNA/mRNA modules in plant-insect herbivory. 
Biotechnological approaches involving RNAi strategy prove to be successful in eradicating pests. In this review, 
we have discussed the progress made so far in understanding the role of miRNAs in plant insect interactions and 
artificial miRNA (amiRNA) mediated RNAi strategies used to combat the menace of insect pests in plants.   

1. Introduction 

Small non-coding RNAs (sRNAs) of ~20–30 nucleotides in length are 
found to control gene expression in eukaryotes by regulation of genes 
that share complementarity with the regulating sRNA molecules. These 
micromanagers of gene expression play an undeniable role in changing 
the expression patterns of genes in tissue-specific manner, thus con-
trolling the overall metabolism and physiological processes of the or-
ganism (Bartel, 2004). Among the non-coding sRNAs, small-interfering 
RNAs (siRNAs) and microRNAs (miRNAs) are the major regulators in 
silencing the expression of certain genes. Although the mechanism of 
action of both siRNAs and miRNAs are almost similar but both of the 
classes of sRNAs follow different paths of biogenesis (Carthew and 
Sontheimer, 2009). 

miRNAs are 19–24 nucleotides (~22 nt) long endogenous molecules, 
that serve as regulators of endogenous nucleic acids either by the 
degradation of complementary mRNA transcripts or by inhibiting the 
translation process (Bartel, 2004; Chen, 2005; Brodersen et al., 2008; 
Wang et al., 2019). The first miRNA identified was that of the lin-4 
product in the nematode Caenorhabditis elegans (Lee et al., 1993). In a 
pioneering work, it was seen that the lin-4 gene doesn’t code for any 
protein, rather some 22 nt and 61 nt long products were formed which 
had high complementarity with the 3′ UTR of the transcript of the gene 
lin-14. The longer product acted as the precursor for the shorter product 
by folding itself into a stem loop structure. Lin-4 gene products were seen 

to repress the lin-14 gene activity during larval developmental stages of 
C. elegans (Bartel, 2004; Lee et al., 1993; Wightman et al., 1993). Pro-
gressive studies revealed the role of miRNAs in different metabolic 
processes of both plants and animals. For instance, Arabidopsis CAF 
(Carpel Factory) gene which is homologous to Dicer proteins, codes for a 
protein with RNA helicase activity at the N-terminal domain and RNase 
III-like activity at the C-terminal domain. This CAF gene product was 
shown to associate with determinate floral development (Jacobsen 
et al., 1999) and miRNA processing activities in Arabidopsis (Reinhart 
et al., 2002). The caf mutants showed reduced accumulation of miRNAs 
(Reinhart et al., 2002) and indeterminate floral development in Arabi-
dopsis (Jacobsen et al., 1999). The miRNA biogenesis and processing can 
be regulated by plants in response to external factors (Manavella et al., 
2019). 

miRNAs are synthesized by RNA-Pol II from non-coding regions of 
DNA, especially introns and very rarely from 5′UTR and 3′UTR regions 
(Carthew and Sontheimer, 2009). RNA-Pol II transcribes the regions of 
the DNA into long primary transcripts being capped and polyadenylated 
called the pri-miRNAs which then fold to form a looped double stranded 
structure (Carthew and Sontheimer, 2009; Pareek et al., 2015). The pri- 
miRNAs are then cut into 500–800 nucleotides long pre-miRNAs by an 
enzyme called DCL1 (Dicer Like 1) that has RNaseIII activity with the 
coordination of HYL1 (Hyponastic Leaves 1), a dsRNA binding protein 
and SE (Serrate), a zinc finger protein (Pareek et al., 2015; Zhu, 2008; 
Zhuo et al., 2013). The unstable pre-miRNAs are converted to miRNA: 
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