ACKNOWLEDGEMENT

First and foremost, with immense sense of gratitude, I would like to convey my sincere thanks to my supervisor Prof. Kumananda Tayung for his constant guidance, motivation and constructive criticism during my research. He has been the source of my commitment to thrive better in this field and find out approaches to encourage my inquisitiveness towards my research and its findings.

I would specially thank the Head of the Department of Botany, Gauhati University, for providing me with all the necessary facilities that enabled the smooth conduct of my research.

I would also like to acknowledge with gratitude Prof. Antonio Evidente, Dr. Marco Masi and Dr. Alessio Cimmino, Department of Chemistry, University of Naples Federico II, Italy for their contributing to the quality and richness of this research by helping out in purification and structural elucidation of the bioactive metabolites.

I extend my sincere thanks to Dr. Prajjalendra Kumar Barooah, Guwahati Biotech Park, IIT (Guwahati) for helping with the characterization of the metabolites.

I would also like to extend my deepest gratefulness to Dr. Srichandan Padhi, Scientist Fellow (Food Technology), DBT-Institute of Bioresources and Sustainable Development (IBSD), Sikkim for his helping hand in phylogenetic analysis of the isolated endophytic fungi.

I would like to extend my sincere thanks to Dr. Souravjyoti Borah and Dr. Ashish Kar for helping me with the taxonomic identification of the medicinal plants used for the study. With immense pleasure I offer my sincere thanks to all the faculty members and staff members of the Department of Botany, Gauhati University. I would also like to thank my fellow research scholars who were the source of immense support and aid while conducting my research work.

Finally, I would also like to express my heartfelt thanks to all members of my family and all those friends for their constant inspiration and for their belief in me. I extend my heartfelt thanks to them for helping me through thick and thin times to concentrate on my research work.

Date: 28.06.2021

Rojeepa Talukday Signature

Place: Guwahati

ABBREVIATIONS

μL	– Microlitre
μm	– Micrometer
°C	– Degree centigrade
BOD	– Biological Oxygen Demand
CFU	– Colony Forming Units
CHCl ₃ - <i>i</i> -PrOH	– Chloroform isopropyl alcohol
DMSO	– Dimethyl Sulphoxide
dNTPs	– Deoxyribonucleotide Triphosphates
EtOAc	– Ethyl Acetate
EtOH	– Ethanol
eV	– Electron Volt
H ₂ SO ₄	– Sulphuric acid
hr	– Hour (s)
KBr	– Potassium Bromide
km	– Kilometer
L	– Litre
Μ	– Molar
МеОН	– Methanol
mg	– Miligram
MgCl ₂	– Magnesium Chloride
MgSO ₄	– Magnesium Sulphate
MHz	– Megahertz
min	– Minute (s)

mM	– Mili molar
mm	– Milimeter
MTCC	– Microbial Type Culture Collection
NaOCl	– Sodium Hypochlorite
ng	– Nanogram
nm	– Nanometer
pm	– Picomols
rpm	– Rotation per minute
S	– Second (s)
U	– Units

LIST OF TABLES

Table No.	Title	Page No.
Table 4.1	Plant species selected for endophytic study with their medicinal properties	32
Table 4.2	Sampling sites of the selected plant species	32
Table 4.3	Recovery of endophytes from <i>H. cordata</i> leaf on different media from various sites	35
Table 4.4	Recovery of endophytes from <i>E. foetidum</i> leaf on different media from various sites	35
Table 4.5	Recovery of endophytes from <i>Z. oxyphyllum</i> leaf on different media from various sites	35
Table 4.6	Composition of endophytic fungi in healthy leaf tissues of <i>H. cordata</i> isolated from four different sites of Assam	38
Table 4.7	Composition of endophytic fungi in healthy leaf tissues of <i>E. foetidum</i> isolated from three different sites of Assam	42
Table 4.8	Composition of endophytic fungi in healthy leaf tissues of <i>Z. oxyphyllum</i> isolated from three different sites of Assam	46
Table 4.9	Antimicrobial activity of endophytic fungi of <i>H</i> . <i>cordata</i> against test organisms	54
Table 4.10	Antimicrobial activity of endophytic fungi of <i>E. foetidum</i> against test organisms	51
Table 4.11.	Antimicrobial activity of endophytic fungi of Z. <i>oxyphyllum</i> against test organisms	56
Table 4.12	Comparison of ITS2 secondary RNA motif features among <i>C. coccodes</i> of different life styles	64
Table 4.13	Comparison of ITS2 secondary RNA motif features of <i>P. capitalensis</i> different life styles	69
Table 4.14	Functional groups and compound classes present in the ethyl acetate extract obtained from endophytic fungus <i>C.coccodes</i>	73
Table 4.15	Major identified compounds present in the ethyl acetate extract of endophytic fungus <i>C. coccodes</i>	75
Table 4.16	Functional groups and compound classes present in the ethyl acetate extract obtained from endophytic fungus <i>P. capitalensis</i>	77

Table 4.17	Major identified compounds present in the ethyl acetate	78
	extract of endophytic fungus P. capitalensis	
Table 4.18	Functional groups and compound classes present in the	80
	ethyl acetate extract obtained from endophytic fungus	
	S. brevicaulis	
Table 4.19	Major identified compounds present in the ethyl acetate	81
	extract of endophytic fungus S. brevicaulis	
Table 4.20	Functional groups and compound classes present in the	83
	ethyl acetate extract obtained from endophytic fungus	
	P. lilacinum	
Table 4.21	Major identified compounds present in the ethyl acetate	84
	extract of endophytic fungus P. lilacinum	
Table 4.22	Functional groups and compound classes present in the	86
	ethyl acetate extract obtained from endophytic fungus	
	P. chrysogenum	
Table 4.23	Major identified compounds present in the ethyl acetate	87
	extract of endophytic fungus P. chrysogenum	
Table 4.24	Functional groups and compound classes present in the	89
	ethyl acetate extract obtained from endophytic fungus	
	C. gleosporoides	
Table 4.25	Major identified compounds present in the ethyl acetate	90
	extract of endophytic fungus C. gleosporoides	

LIST OF FIGURES

Figure No.	Title	Page No.
Figure 4.1.	Map of Assam indicating sampling sites of the selected plants	33
Figure 4.2	Voucher specimen of the plant species deposited at GUBH with accession numbers	34
Figure 4.3	Photo-plates showing growth of endophytic fungi from <i>H</i> . <i>cordata</i> on various media	37
Figure 4.4	Microscopic photographs of some endophytic fungi isolated from <i>H. cordata-</i> a) <i>Curvularia lunata</i> , b) <i>Bipolaris</i> sp., c) <i>Colletotrichum dematium</i> , d) <i>C. capsici</i> e) <i>Pseudozyma</i> sp., f) <i>Colletotrichum acutatum</i> , g) <i>Corynespora casiicola</i> , h) <i>Corynespora</i> sp., i) <i>Colletotrichum gloeosporoides</i> , j) <i>Colletotrichum</i> sp.1 (under 40x and 100x)	39
Figure 4.5	Photo-plates showing growth of endophytic fungi from <i>E. foetidum</i> on various media	41
Figure 4.6	Microscopic photographs of some endophytic fungi isolated from <i>E. foetidum-</i> a) <i>Scopulariopsis brevicaulis</i> , b) <i>Cladosporium</i> <i>macrocarpum</i> , c) <i>C. fulvum</i> , d) <i>Penicillium chrysogenum</i> , e) <i>Stemphylium botryosum</i> , f) <i>Stemphylium sp.</i> , g) <i>Alternaria</i> <i>alternata</i> , h) <i>Purpureocillium lilacinum</i> , i) <i>Colletotrichum</i> <i>tropicale</i> , <i>j</i>) <i>C. boninense</i> , k) <i>C. orbiculare</i> , l) <i>C. hippeastri</i> (under 40x and 100x)	43
Figure 4.7	Photo-plates showing growth of endophytic fungi from Z. <i>oxyphyllum</i> on various media	45
Figure 4.8	Microscopic photographs of some endophytic fungi isolated from Z. oxyphyllum- a) Fusarium oxysporum, b) Curvularia pallescens, c) C. protuberata, d) C. geniculata, e) Aspergillus flavus., f) Corynespora casiicola, g) Colletotrichum , h) Colletotrichum dematium , i) C. siamense, j) C. nymphae , k) C. asianum l) C. gloeosporioides (under 40x and 100x)	47
Figure 4.9	Percentage colonization of endophytic fungal genera occurring in the three selected ethno-medicinal plants	49
Figure 4.10	Test pathogens procured from IMTECH, Chandigarh: a) Candida albicans, b) Escherichia coli, c) Pseudomonas aeruginosa, d) Staphylococcus aureus	51
Figure 4.11	Antimicrobial activities of some potent endophytic fungi against test organisms	53

Figure 4.12 (A-C)	Effect of different media and incubation periods on the antimicrobial activity of crude secondary metabolites of endophytic fungal isolates HCS3, HCS6 and EF1 respectively against the test pathogens: $CA = C$. <i>albicans</i> , $SA = S$. <i>aureus</i> , EC= <i>E. coli</i> and PA= <i>P. aeruginosa</i> .	58
Figure 4.12(D-F)	Effect of different media and incubation periods on the antimicrobial activity of crude secondary metabolites of endophytic fungal isolates HCS3, HCS6, EF1, EF6, EFB9 and ZOB3 against the test pathogens: CA= <i>C. albicans</i> , SA= <i>S. aureus</i> , EC= <i>E. coli</i> and PA= <i>P. aeruginosa</i>	59
Figure 4.13 (A-F)	Effect of different pH on the antimicrobial activity of crude secondary metabolites of endophytic fungal isolates HCS3, HCS6, EF1, EF6, EFB9 and ZOB3 against the test pathogens: CA= <i>C. albicans</i> , SA= <i>S. aureus</i> , EC= <i>E. coli</i> and PA= <i>P. aeruginosa</i>	61
Figure 4.14	Colonial morphology of <i>Colletotrichum</i> sp. (HCS3) on PDA medium: A) Front view, B) Reverse view and MEA medium: C)Front view D)Reverse view; Spores(E and F) (under 40x and 100x respectively).	63
Figure 4.15	Phylogenetic tree generated using Maximum Parsimony showing clustering of our isolate under the clade <i>Colletotrichun coccodes</i> . Trees were constructed using ITS rDNA (A) and ITS2 (B) sequences.	65
Figure 4.16	ITS2 secondary RNA structures showing comparison between different lifestyles of pathogenic (A) <i>Colletotrichun coccodes</i> , (B) endophytic <i>C. coccodes</i> (MF076580) and (C) isolate HCS3 <i>C. coccodes</i> (MN128230).	66
Figure 4.17	Colonial morphology of Morphotype (HCS6) on PDA medium: A) Front view, B) Reverse view and MEA: C) Front view D) Reverse view; Sterile Hyphae (E) and Conidia like structure (F) (under 40x).	68
Figure 4.18	Phylogenetic tree generated using Maximum Parsimony showing clustering of our isolate under the clade <i>Phyllosticta capitalensis</i> . Trees were constructed using ITS rDNA (A) and ITS2 (B) sequences.	70
Figure 4.19	ITS2 secondary RNA structures showing comparison of different motif features between (A) isolate HCS6 <i>Phyllosticta</i> sp. (MN170572.1) and (B) endophytic <i>Phyllosticta capitalensis</i> (MK105811.1).	71
Figure 4.20	FTIR spectra of the ethyl acetate extract of endophytic fungus isolate HCS3 (<i>Colletotrichum coccodes</i>)	73

Figure 4.21	GCMS chromatogram of the ethyl acetate extract of endophytic	74
	fungus C. coccodes	
Figure 4.22	FTIR spectra of the ethyl acetate extract of endophytic fungus	77
	isolate HCS6 (Phyllosticta capitalensis)	
Figure 4.23	GCMS chromatogram of the ethyl acetate extract of endophytic	78
	fungus P. capitalensis	70
Figure 4.24	FTIR spectra of the ethyl acetate extract of endophytic fungus	80
	isolate EF1 (Scopulariosis brevicaulis)	
Figure 4.25	GCMS chromatogram of the ethyl acetate extract of endophytic	81
	fungus S. brevicaulis	
Figure 4.26	FTIR spectra of the ethyl acetate extract of endophytic fungus	83
	isolate EF6 (Purpureocillium lilacinum)	
Figure 4.27	GCMS chromatogram of the ethyl acetate extract of endophytic	84
	fungus P. lilacinum	
Figure 4.28	FTIR spectra of the ethyl acetate extract of endophytic fungus	86
	isolate EFB9 (<i>Penicillium chrysogenum</i>)	
Figure 4.29	GCMS chromatogram of the ethyl acetate extract of endophytic	87
	fungus Penicillium chrysogenum	
Figure 4.30	FTIR spectra of the ethyl acetate extract of endophytic fungus	89
	isolate ZOB3 (Colletotrichum gleosporoides)	
Figure 4.31	GCMS chromatogram of the ethyl acetate extract of endophytic	90
	fungus C. gleosporoides	
Figure 4.32	Chemical structure of Tyrosol isolated from Colletotrichum	91
	coccodes	

CONTENTS

Certificate by the supervisor	i
Declaration	ii
Acknowledgement	iii
Abbreviations	v
List of Tables	vii
List of Figures	ix
<u>CHAPTER –I</u> INTRODUCTION	1
<u>CHAPTER –II</u> REVIEW OF LITERATURE	7
2.1 Endophytes	7
2.1.1 Endophytic fungi	8
2.2 Medicinal plants and endophytic fungi	9
2.2.1 Endophytic fungi from ethno-medicinal plants of India	10
2.2.2 Endophytic fungi from ethno-medicinal plants of	
North-East India	11
2.3 Endophytic fungi and their bioactive secondary metabolites	12
2.3.1 Antimicrobial metabolites from endophytic fungi of	
medicinal plants	14
2.3.2 Anticancer metabolites from endophytic fungi of medicinal	
Plants	16
2.3.3 Antioxidant metabolites from endophytic fungi of medicinal	
plants	17
2.3.4 Other bioactivity of endophytic fungi of medicinal plants	18

CHA	<u>CHAPTER –III</u> MATERIALS AND METHODS	
	3.1 Plants selection and samples collection	20
	3.2 Processing of plant samples	20
	3.3 Development of sterilization protocol and test for efficacy	20
	3.4 Isolation of endophytic fungi	21
	3.5 Morphological identification of endophytic fungal isolates	22
	3.6 Data Analysis	22
	3.7 Screening for antimicrobial activity against test pathogens	23
	3.7.1 Test organisms used	23
	3.7.2 Fungal Cultivation and metabolites extraction	23
	3.7.3 Determination of antimicrobial activity	24
	3.8 Process optimization for enhanced metabolite production	25
	3.9 Molecular identification of endophytic fungal isolates	25
	3.9.1 Genomic DNA isolation, amplification and sequencing	26
	3.9.2 Taxon sampling and phylogenetic analysis	27
	3.9.3 RNA secondary structure analysis	27
	3.10 Characterization of bioactive metabolites	28
	3.10.1 FTIR Analysis	28
	3.10.2 GC-MS Analysis	28
	3.11 Purification and structure elucidation of metabolites	29
CHA	<u>PTER –IV</u> RESULTS	31
	4.1 Collection and identification of plant samples	31
	4.2 Isolation and identification of endophytic fungi	31
	4.2.1 Endophytic fungi from H. cordata	36
	4.2.2 Endophytic fungi from E. foetidum	40
	4.2.3 Endophytic fungi from Z. oxyphyllum	44

4.3 Antimicrobial activity of the isolated endophytic fungi		
4.4 Process optimization of potent endophytic isolates		
4.5 Molecular identification and phylogeny study		
4.5.1 Molecular characterization and phylogeny of		
Colletotrichum sp. (HCS3)	62	
4.5.2 Molecular characterization and phylogeny of		
Morphotype (HCS6)	67	
4.6 Characterization of bioactive secondary metabolites of		
potent fungal isolates	72	
4.6.1 Metabolite profiling of endophytic fungus		
Colletotrichum coccodes (HCS3)	72	
4.6.2 Metabolites profiling of endophytic fungus		
Phyllosticta capitalensis (HCS6)	76	
4.6.3 Metabolite profiling of endophytic fungus		
Scopulariosis brevicaulis (EF1)	79	
4.6.4 Metabolite profiling of endophytic fungus		
Purpureocillium lilacinum (EF6)	82	
4.6.5 Metabolite profiling of endophytic fungus Penicillium		
chrysogenum (EFB9)	85	
4.6.6 Metabolite profiling of endophytic fungus Colletotrichum		
<i>gleosporoides</i> (ZOB3) 4.7 Purification and identification of metabolites of		
C. coccodes (HCS3)		

<u>CHAPTER -V</u> DIS	CUSSION	92
SUMMARY AND	CONCLUSION	104
REFERENCES		109
Appendix I	NUCLEIC ACID SEQUENCES DEPOSITED	IN NCBI
Appendix II	PUBLIC	CATIONS